湖南省株洲市茶陵二中2022年高一數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第1頁
湖南省株洲市茶陵二中2022年高一數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第2頁
湖南省株洲市茶陵二中2022年高一數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第3頁
湖南省株洲市茶陵二中2022年高一數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第4頁
湖南省株洲市茶陵二中2022年高一數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.空間直角坐標系中,已知點,則線段的中點坐標為A. B.C. D.2.將函數(shù)的圖象上所有點的橫坐標縮小到原來的倍,縱坐標保持不變,得到函數(shù)的圖象,若,則的最小值為()A. B.C. D.3.設(shè),給出下列四個結(jié)論:①;②;③;④.其中所有的正確結(jié)論的序號是A.①② B.②③C.①②③ D.②③④4.已知偶函數(shù)的定義域為,當(dāng)時,,若,則的解集為()A. B.C. D.5.已知函數(shù)為上偶函數(shù),且在上的單調(diào)遞增,若,則滿足的的取值范圍是()A. B.C. D.6.已知點,,,且滿足,若點在軸上,則等于A. B.C. D.7.已知向量滿足,且,若向量滿足,則的取值范圍是A. B.C D.8.已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是()A.108cm3 B.100cm3C.92cm3 D.84cm39.?dāng)?shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半這條直線被后人稱之為三角形的歐拉線若的頂點,,且的歐拉線的方程為,則頂點C的坐標為A. B.C. D.10.與-2022°終邊相同的最小正角是()A.138° B.132°C.58° D.42°11.已知函數(shù),則的()A.最小正周期,最大值為 B.最小正周期為,最大值為C.最小正周期為,最大值為 D.最小正周期為,最大值為12.下列函數(shù)中既是奇函數(shù),又是減函數(shù)的是()A. B.C D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.不等式的解集為_____________.14.已知,,試用a、b表示________.15.將函數(shù)圖象上的所有點向右平行移動個單位長度,則所得圖象的函數(shù)解析式為___________.16.給出下列命題“①設(shè)表示不超過的最大整數(shù),則;②定義:若任意,總有,就稱集合為的“閉集”,已知且為的“閉集”,則這樣的集合共有7個;③已知函數(shù)為奇函數(shù),在區(qū)間上有最大值5,那么在上有最小值.其中正確的命題序號是_________.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.若函數(shù)f(x)滿足f(logax)=·(x-)(其中a>0且a≠1).(1)求函數(shù)f(x)解析式,并判斷其奇偶性和單調(diào)性;(2)當(dāng)x∈(-∞,2)時,f(x)-4的值恒為負數(shù),求a的取值范圍18.已知函數(shù)的最小正周期為,再從下列兩個條件中選擇一個作為已知條件:條件①:的圖象關(guān)于點對稱;條件②:的圖象關(guān)于直線對稱(1)請寫出你選擇的條件,并求的解析式;(2)在(1)的條件下,求的單調(diào)遞增區(qū)間注:如果選擇條件①和條件②分別解答,按第一個解答計分19.計算下列各題:(1);(2).20.已知函數(shù)(,且).(1)若函數(shù)在上的最大值為2,求的值;(2)若,求使得成立的的取值范圍.21.已知函數(shù).(1)求函數(shù)的定義域;(2)判斷函數(shù)的奇偶性,并說明理由;(3)若函數(shù),求函數(shù)零點.22.(1)設(shè)函數(shù).若不等式對一切實數(shù)恒成立,求實數(shù)的取值范圍;(2)解關(guān)于的不等式.

參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、A【解析】點,由中點坐標公式得中得為:,即.故選A.2、D【解析】求出g(x)解析式,作出g(x)圖像,根據(jù)圖像即可求解﹒【詳解】由題得,,,∵,∴=1且=-1或且=1,作的圖象,∴的最小值為=,故選:D3、B【解析】因為,所以①為增函數(shù),故=1,故錯誤②函數(shù)為減函數(shù),故,所以正確③函數(shù)為增函數(shù),故,故,故正確④函數(shù)為增函數(shù),,故,故錯誤點睛:結(jié)合指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)單調(diào)性可以逐一分析得出四個結(jié)論的真假性.4、D【解析】先由條件求出參數(shù),得到在上的單調(diào)性,結(jié)合和函數(shù)為偶函數(shù)進行求解即可.【詳解】因為為偶函數(shù),所以,解得.在上單調(diào)遞減,且.因為,所以,解得或.故選:D5、B【解析】根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性解函數(shù)不等式【詳解】是偶函數(shù),.所以不等式化為,又在上遞增,所以,或,即或故選:B6、C【解析】由題意得,∴設(shè)點的坐標為,∵,∴,∴,解得故選:C7、B【解析】由題意利用兩個向量加減法的幾何意義,數(shù)形結(jié)合求得的取值范圍.【詳解】設(shè),根據(jù)作出如下圖形,則當(dāng)時,則點的軌跡是以點為圓心,為半徑的圓,且結(jié)合圖形可得,當(dāng)點與重合時,取得最大值;當(dāng)點與重合時,取得最小值所以的取值范圍是故當(dāng)時,的取值范圍是故選:B8、B【解析】由三視圖可知:該幾何體是一個棱長分別為6,6,3,砍去一個三條側(cè)棱長分別為4,4,3的一個三棱錐(長方體的一個角).據(jù)此即可得出體積解:由三視圖可知:該幾何體是一個棱長分別為6,6,3,砍去一個三條側(cè)棱長分別為4,4,3的一個三棱錐(長方體的一個角)∴該幾何體的體積V=6×6×3﹣=100故選B考點:由三視圖求面積、體積9、A【解析】設(shè)出點C的坐標,由重心坐標公式求得重心,代入歐拉線得一方程,求出AB的垂直平分線,和歐拉線方程聯(lián)立求得三角形的外心,由外心到兩個頂點的距離相等得另一方程,兩方程聯(lián)立求得點C的坐標【詳解】設(shè)C(m,n),由重心坐標公式得,三角形ABC的重心為(,),代入歐拉線方程得:2=0,整理得:m﹣n+4=0①AB的中點為(1,2),直線AB的斜率k2,AB的中垂線方程為y﹣2(x﹣1),即x﹣2y+3=0聯(lián)立,解得∴△ABC的外心為(﹣1,1)則(m+1)2+(n﹣1)2=32+12=10,整理得:m2+n2+2m﹣2n=8②聯(lián)立①②得:m=﹣4,n=0或m=0,n=4當(dāng)m=0,n=4時B,C重合,舍去∴頂點C的坐標是(﹣4,0)故選A【點睛】本題考查直線方程的求法,訓(xùn)練了直線方程的點斜式,考查了方程組的解法10、A【解析】根據(jù)任意角的周期性,將-2022°化為,即可確定最小正角.【詳解】由-2022°,所以與-2022°終邊相同的最小正角是138°.故選:A11、B【解析】利用輔助角公式化簡得到,求出最小正周期和最大值.【詳解】所以最小正周期為,最大值為2.故選:B12、A【解析】根據(jù)對數(shù)、指數(shù)、一次函數(shù)的單調(diào)性判斷BCD,根據(jù)定義判斷的奇偶性.【詳解】因為在定義域內(nèi)都是增函數(shù),所以BCD錯誤;因為,所以函數(shù)為奇函數(shù),且在上單調(diào)遞減,A正確.故選:A二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】將不等式轉(zhuǎn)化為,利用指數(shù)函數(shù)的單調(diào)性求解.【詳解】不等式為,即,解得,所以不等式的解集為,故答案為:14、【解析】根據(jù)對數(shù)式指數(shù)式互化公式,結(jié)合對數(shù)換底公式、對數(shù)的運算性質(zhì)進行求解即可.【詳解】因為,所以,因此有:,故答案為:15、【解析】由題意利用函數(shù)的圖象變換規(guī)律,即可得到結(jié)果【詳解】將函數(shù)的圖象向右平移個單位,所得圖象對應(yīng)的函數(shù)解析式,即.故答案為:.16、①②【解析】對于①,如果,則,也就是,所以,進一步計算可以得到該和為,故①正確;對于②,我們把分成四組:,由題設(shè)可知不是“閉集”中的元素,其余三組元素中的每組元素必定在“閉集”中同時出現(xiàn)或同時不出現(xiàn),故所求的“閉集”的個數(shù)為,故②正確;對于③,因為在上的最大值為,故在上的最大值為,所以在上的最小值為,在上的最小值為,故③錯.綜上,填①②點睛:(1)根據(jù)可以得到,因此,這樣的共有,它們的和為,依據(jù)這個規(guī)律可以寫出和并計算該和(2)根據(jù)閉集的要求,中每組元素都是同時出現(xiàn)在閉集中或者同時不出現(xiàn)在閉集中,故可以根據(jù)子集的個數(shù)公式來計算(3)注意把非奇非偶函數(shù)轉(zhuǎn)化為奇函數(shù)或偶函數(shù)來討論三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)見解析.(2)[2-,1)∪(1,2+]【解析】試題分析:(1)利用換元法求函數(shù)解析式,注意換元時元的范圍,再根據(jù)奇偶性定義判斷函數(shù)奇偶性,最后根據(jù)復(fù)合函數(shù)單調(diào)性性質(zhì)判斷函數(shù)單調(diào)性(2)不等式恒成立問題一般轉(zhuǎn)化為對應(yīng)函數(shù)最值問題:即f(x)最大值小于4,根據(jù)函數(shù)單調(diào)性確定函數(shù)最大值,自在解不等式可得a的取值范圍試題解析:(1)令logax=t(t∈R),則x=at,∴f(t)=(at-a-t)∴f(x)=(ax-a-x)(x∈R)∵f(-x)=(a-x-ax)=-(ax-a-x)=-f(x),∴f(x)為奇函數(shù)當(dāng)a>1時,y=ax為增函數(shù),y=-a-x為增函數(shù),且>0,∴f(x)為增函數(shù)當(dāng)0<a<1時,y=ax為減函數(shù),y=-a-x為減函數(shù),且<0,∴f(x)為增函數(shù).∴f(x)在R上為增函數(shù)(2)∵f(x)是R上的增函數(shù),∴y=f(x)-4也是R上的增函數(shù)由x<2,得f(x)<f(2),要使f(x)-4在(-∞,2)上恒為負數(shù),只需f(2)-4≤0,即(a2-a-2)≤4.∴()≤4,∴a2+1≤4a,∴a2-4a+1≤0,∴2-≤a≤2+.又a≠1,∴a的取值范圍為[2-,1)∪(1,2+]點睛:不等式有解是含參數(shù)的不等式存在性問題時,只要求存在滿足條件的即可;不等式的解集為R是指不等式的恒成立,而不等式的解集的對立面(如的解集是空集,則恒成立))也是不等式的恒成立問題,此兩類問題都可轉(zhuǎn)化為最值問題,即恒成立?,恒成立?.18、(1)(2)【解析】(1)根據(jù)周期可得,選擇條件①:由可求出;選擇條件②:由可求出;(2)令可求出單調(diào)遞增區(qū)間.【小問1詳解】的最小正周期為,則.選擇條件①:因為的圖象關(guān)于點對稱,所以,則,因為,所以,則;選擇條件②:因為的圖象關(guān)于直線對稱,所以,則,、因為,所以,則;【小問2詳解】由(1),令,解得,所以的單調(diào)遞增區(qū)間為.19、(1);(2).【解析】(1)利用指對冪運算性質(zhì)化簡求值;(2)利用對數(shù)運算性質(zhì)化簡求值.【小問1詳解】原式.【小問2詳解】原式.20、(1)或;(2)【解析】(1)分類討論和兩種情況,結(jié)合函數(shù)的單調(diào)性可得:或;(2)結(jié)合函數(shù)的解析式,利用指數(shù)函數(shù)的單調(diào)性可得,求解對數(shù)不等式可得的取值范圍是.試題解析:(1)當(dāng)時,在上單調(diào)遞增,因此,,即;當(dāng)時,上單調(diào)遞減,因此,,即.綜上,或.(2)不等式即.又,則,即,所以.21、(1)(2)為奇函數(shù)(3)【解析】(1)要使函數(shù)有意義,必須滿足,從而得到定義域;(2)利用奇偶性定義判斷奇偶性;(3)函數(shù)的零點即方程的根.即的根,又為奇函數(shù),所以.易證:在定義域上為增函數(shù),∴由得,從而解得函數(shù)的零點.試題解析:(1)要使函數(shù)有意義,必須滿足,∴,因此,的定義域為.(2)函數(shù)為奇函數(shù).∵的定義域為,對內(nèi)的任意有:,所以,為奇函數(shù).(3)函數(shù)的零點即方程的根.即的根,又為奇函數(shù),所以.任取,且,∵,∴,∴∵且,∴,∴,∴,∴,即,∴在定義域上為增函數(shù),∴由得解得或,驗證當(dāng)時,不符合題意,當(dāng)時,符合題意,所以函數(shù)的零點為.點睛:證明

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論