版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.福州新港江陰港區(qū)地處福建最大海灣興化灣西北岸,全年全日船泊進出港不受航道及潮水的限制,是迄今為止“我國少有、福建最佳”的天然良港.如圖,是港區(qū)某個泊位一天中6時到18時的水深變化曲線近似滿足函數(shù),據(jù)此可知,這段時間水深(單位:m)的最大值為()A.5 B.6C.8 D.102.下列函數(shù)在定義域內(nèi)單調(diào)遞增的是()A. B.C. D.3.“對任意,都有”的否定形式為()A.對任意,都有B.不存在,都有C.存在,使得D.存在,使得4.已知,則的最小值是()A.2 B.C.4 D.5.已知函數(shù),若,則恒成立時的范圍是()A. B.C. D.6.已知冪函數(shù)的圖象過點(4,2),則()A.2 B.4C.2或-2 D.4或-47.設集合,,則集合=()A B.C. D.8.已知點,.若過點的直線l與線段相交,則直線的斜率k的取值范圍是()A. B.C.或 D.9.已知,則的大小關系是()A. B.C. D.10.已知函數(shù)的值域為,則實數(shù)m的值為()A.2 B.3C.9 D.27二、填空題:本大題共6小題,每小題5分,共30分。11.當一個非空數(shù)集G滿足“如果,則,,,且時,”時,我們稱G就是一個數(shù)域,以下關于數(shù)域的命題:①0和1都是任何數(shù)域的元素;②若數(shù)域G有非零元素,則;③任何一個有限數(shù)域的元素個數(shù)必為奇數(shù);④有理數(shù)集是一個數(shù)域;⑤偶數(shù)集是一個數(shù)域,其中正確的命題有______________.12.圓柱的側面展開圖是邊長分別為的矩形,則圓柱的體積為_____________13.若圓上有且僅有兩個點到直線的距離等于1,則半徑R的取值范圍是_____14.已知集合,,則集合中元素的個數(shù)為__________15.已知函數(shù)f(x)是定義在R上的奇函數(shù),當時,,則函數(shù)的零點個數(shù)為______16.若函數(shù)在區(qū)間上單調(diào)遞減,在上單調(diào)遞增,則實數(shù)的取值范圍是_________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在扇形OAB中,半徑OA=1,圓心角C是扇形弧上的動點,矩形CDEF內(nèi)接于扇形,且OE=OF.記∠AOC=θ,求當角θ為何值時,矩形CDEF的面積S最大?并求出這個最大的面積.18.已知定義域為的函數(shù)是奇函數(shù)(1)求,的值;(2)用定義證明在上為減函數(shù);(3)若對于任意,不等式恒成立,求的范圍19.如圖,在三棱錐P﹣ABC中,PA⊥平面ABC,CA=CB,點D,E分別為AB,AC的中點.求證:(1)DE∥平面PBC;(2)CD⊥平面PAB20.設函數(shù),其中,且.(1)求的定義域;(2)當時,函數(shù)圖象上是否存在不同兩點,使過這兩點的直線平行于軸,并證明.21.在平面直角坐標系中,已知角的頂點為坐標原點,始邊為軸的正半軸,終邊過點(1)求的值;(2)求的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】從圖象中的最小值入手,求出,進而求出函數(shù)的最大值,即為答案.【詳解】從圖象可以看出,函數(shù)最小值為-2,即當時,函數(shù)取得最小值,即,解得:,所以,當時,函數(shù)取得最大值,,這段時間水深(單位:m)的最大值為8m.故選:C2、D【解析】根據(jù)題意,依次分析選項中函數(shù)的單調(diào)性,綜合即可得答案詳解】解:根據(jù)題意,依次分析選項:對于A,,是二次函數(shù),在其定義域上不是單調(diào)函數(shù),不符合題意;對于B,,是正切函數(shù),在其定義域上不是單調(diào)函數(shù),不符合題意;對于C,,是指數(shù)函數(shù),在定義域內(nèi)單調(diào)遞減,不符合題意;對于D,,是對數(shù)函數(shù),在定義域內(nèi)單調(diào)遞增,符合題意;故選:D3、D【解析】全稱命題的否定是特稱命題,據(jù)此得到答案.【詳解】全稱命題的否定是特稱命題,則“對任意,都有”的否定形式為:存在,使得.故選:D.【點睛】本題考查了全稱命題的否定,屬于簡單題.4、C【解析】根據(jù)對數(shù)運算和指數(shù)運算可得,,再由以及基本不等式可得.【詳解】因為,所以,所以,所以,所以,當且僅當即時,等號成立.故選:C.【點睛】本題考查了指數(shù)和對數(shù)運算,基本不等式求最值,屬于中檔題.5、B【解析】利用條件f(1)<0,得到0<a<1.f(x)在R上單調(diào)遞減,從而將f(x2+tx)<f(x﹣4)轉化為x2+tx>x﹣4,研究二次函數(shù)得解.【詳解】∵f(﹣x)=a﹣x﹣ax=﹣f(x),∴f(x)是定義域為R的奇函數(shù),∵f(x)=ax﹣a﹣x(a>0且a≠1),且f(1)<0,∴,又∵a>0,且a≠1,∴0<a<1∵ax單調(diào)遞減,a﹣x單調(diào)遞增,∴f(x)在R上單調(diào)遞減不等式f(x2+tx)+f(4﹣x)<0化為:f(x2+tx)<f(x﹣4),∴x2+tx>x﹣4,即x2+(t﹣1)x+4>0恒成立,∴△=(t﹣1)2﹣16<0,解得:﹣3<t<5故答案為B【點睛】本題主要考查函數(shù)的奇偶性和單調(diào)性,考查不等式的恒成立問題,意在考查學生對這些知識的掌握水平和分析推理能力.6、B【解析】設冪函數(shù)代入已知點可得選項.【詳解】設冪函數(shù)又函數(shù)過點(4,2),,故選:B.7、B【解析】先根據(jù)一元二次不等式和對數(shù)不等式的求解方法求得集合M、N,再由集合的交集運算可得選項【詳解】解:由得,解得或,所以集合,由得,解得,所以集合,所以,故選:B8、D【解析】由已知直線恒過定點,如圖若與線段相交,則,∵,,∴,故選D.9、B【解析】利用指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì),三角函數(shù)的性質(zhì)比較大小即可【詳解】∵,,∴;∵,∴;∵,∴,∴,又,,∴,∴綜上可知故選:B10、C【解析】根據(jù)對數(shù)型復合函數(shù)的性質(zhì)計算可得;【詳解】解:因為函數(shù)的值域為,所以的最小值為,所以;故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、①②③④【解析】利用已知條件中數(shù)域的定義判斷各命題的真假,題目給出了對兩個實數(shù)的四種運算,要滿足對四種運算的封閉,只有一一驗證.【詳解】①當時,由數(shù)域的定義可知,若,則有,即,,故①是真命題;②因為,若,則,則,,則2019,所以,故②是真命題;③,當且時,則,因此只要這個數(shù)不為就一定成對出現(xiàn),所以有限數(shù)域的元素個數(shù)必為奇數(shù),所以③是真命題;④若,則,且時,,故④是真命題;⑤當時,,所以偶數(shù)集不是一個數(shù)域,故⑤是假命題;故答案為:①②③④【點睛】關鍵點點睛:理解數(shù)域就是對加減乘除封閉的集合,是解題的關鍵,一定要讀懂題目再入手,沒有一個條件是多余的,是難題.12、或【解析】有兩種形式的圓柱的展開圖,分別求出底面半徑和高,分別求出體積.【詳解】圓柱的側面展開圖是邊長為2a與a的矩形,當母線為a時,圓柱的底面半徑是,此時圓柱體積是;當母線為2a時,圓柱的底面半徑是,此時圓柱的體積是,綜上所求圓柱的體積是:或,故答案為或;本題考查圓柱的側面展開圖,圓柱的體積,容易疏忽一種情況,導致錯誤.13、【解析】根據(jù)題意分析出直線與圓的位置關系,再求半徑的范圍.【詳解】圓心到直線的距離為2,又圓(x﹣1)2+(y+1)2=R2上有且僅有兩個點到直線4x+3y=11的距離等于1,滿足,即:|R﹣2|<1,解得1<R<3故半徑R的取值范圍是1<R<3(畫圖)故答案為:【點睛】本題考查直線與圓的位置關系,考查數(shù)形結合的思想,屬于中檔題.14、2【解析】依題意,故,即元素個數(shù)為個.15、10【解析】將原函數(shù)的零點轉化為方程或的根,再作出函數(shù)y=f(x)的圖象,借助圖象即可判斷作答.【詳解】函數(shù)的零點即方程的根,亦即或的根,畫出函數(shù)y=f(x)的圖象和直線,如圖所示,觀察圖象得:函數(shù)y=f(x)的圖象與x軸,直線各有5個交點,則方程有5個根,方程也有5個根,所以函數(shù)的零點有10個.故答案為:1016、【解析】反比例函數(shù)在區(qū)間上單調(diào)遞減,要使函數(shù)在區(qū)間上單調(diào)遞減,則,還要滿足在上單調(diào)遞增,故求出結果【詳解】函數(shù)根據(jù)反比例函數(shù)的性質(zhì)可得:在區(qū)間上單調(diào)遞減要使函數(shù)在區(qū)間上單調(diào)遞減,則函數(shù)在上單調(diào)遞增則,解得故實數(shù)的取值范圍是【點睛】本題主要考查了函數(shù)單調(diào)性的性質(zhì),需要注意反比例函數(shù)在每個象限內(nèi)是單調(diào)遞減的,而在定義域內(nèi)不是單調(diào)遞減的三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、當時,矩形的面積最大為【解析】由點向作垂線,垂足為,利用平面幾何知識得到為等邊三角形,然后利用表示出和,從而得到矩形的面積,利用三角函數(shù)求最值進行分析求解,即可得到答案【詳解】解:由點向作垂線,垂足為,在中,,,由題意可知,,,所以為等邊三角形,所以,則,所以,所以,,所以矩形的面積為,因為,所以當,即時,最大為所以當時,矩形的面積最大為18、(1),;(2)證明見解析;(3).【解析】(1)根據(jù)奇函數(shù)定義,利用且,列出關于、的方程組并解之得;(2)根據(jù)函數(shù)單調(diào)性的定義,任取實數(shù)、,通過作差因式分解可證出:當時,,即得函數(shù)在上為減函數(shù);(3)根據(jù)函數(shù)的單調(diào)性和奇偶性,將不等式轉化為:對任意的都成立,結合二次函數(shù)的圖象與性質(zhì),可得的取值范圍【詳解】解:(1)為上的奇函數(shù),,可得又(1),解之得經(jīng)檢驗當且時,,滿足是奇函數(shù).(2)由(1)得,任取實數(shù)、,且則,可得,且,即,函數(shù)在上為減函數(shù);(3)根據(jù)(1)(2)知,函數(shù)是奇函數(shù)且在上為減函數(shù)不等式恒成立,即也就是:對任意的都成立變量分離,得對任意的都成立,,當時有最小值為,即的范圍是【點睛】本題以含有指數(shù)式的分式函數(shù)為例,研究了函數(shù)的單調(diào)性和奇偶性,并且用之解關于的不等式,考查了基本初等函數(shù)的簡單性質(zhì)及其應用,屬于中檔題19、(1)證明見解析;(2)證明見解析.【解析】(1)由點D、E分別為AB、AC中點得知DE∥BC,由此證得DE∥平面PBC;(2)要證CD⊥平面PAB,只需證明垂直平面內(nèi)的兩條相交直線與即可.【詳解】(1)因為點D、E分別為AB、AC中點,所以DE∥BC又因為DE?平面PBC,BC?平面PBC,所以DE∥平面PBC(2)因為CA=CB,點D為AB中點,所以CD⊥AB因為PA⊥平面ABC,CD?平面ABC,所以PA⊥CD又因為PA∩AB=A,所以CD⊥平面PAB【點睛】本題考查線面平行的證明,線面垂直的證明,屬于基礎題.垂直、平行關系證明中應用轉化與化歸思想的常見類型(1)證明線面、面面平行,需轉化為證明線線平行;(2)證明線面垂直,需轉化為證明線線垂直;(3)證明線線垂直,需轉化為證明線面垂直.20、(1)當時,定義域為;當時,定義域為.(2)不存在,證明見解析.【解析】(1)首先根據(jù)題意得到,再分類討論解不等式即可.(2)首先根據(jù)單調(diào)性定義得到函數(shù)在為增函數(shù),從而得到函數(shù)圖像上不存在不同兩點,使過這兩點的直線平行于軸.【詳解】(1)由題知:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 土地租賃協(xié)議2023
- 部編版六年級語文上冊第八單元知識梳理填空
- (2024)1-4酸鈉鹽生產(chǎn)建設項目可行性研究報告(一)
- 2023年天津市益中學校高考語文模擬試卷
- 2023年家政服務項目融資計劃書
- 零食行業(yè)藍皮書
- 電力電纜模擬習題+參考答案
- 養(yǎng)老院老人生活設施維修人員管理制度
- 養(yǎng)老院老人訪客管理制度
- 2024年旅游產(chǎn)品銷售與推廣合同3篇
- 小學生良好習慣的養(yǎng)成(課堂PPT)
- 單片機C語言音樂播放程序
- 空冷島詳解ppt課件
- IATF16949作業(yè)準備驗證及停工后驗證規(guī)定
- 石墨坩堝生產(chǎn)制造項目規(guī)劃設計方案(75頁)
- 消防聯(lián)動調(diào)試記錄表通用
- EN10204-2004中文版
- (重要)高中數(shù)學數(shù)列十種求通項和七種求和方法,練習及答案
- 教師師德考核記錄表
- 江蘇省對口單招計算機原理教案課件
- 300MW機組熱力系統(tǒng)計算與經(jīng)濟性分析
評論
0/150
提交評論