![Biases-in-the-Risk-Cube-Incose在風(fēng)險(xiǎn)的立方體根據(jù)偏差課件_第1頁](http://file4.renrendoc.com/view/dd483631c4a8301d11c4d47f782297ec/dd483631c4a8301d11c4d47f782297ec1.gif)
![Biases-in-the-Risk-Cube-Incose在風(fēng)險(xiǎn)的立方體根據(jù)偏差課件_第2頁](http://file4.renrendoc.com/view/dd483631c4a8301d11c4d47f782297ec/dd483631c4a8301d11c4d47f782297ec2.gif)
![Biases-in-the-Risk-Cube-Incose在風(fēng)險(xiǎn)的立方體根據(jù)偏差課件_第3頁](http://file4.renrendoc.com/view/dd483631c4a8301d11c4d47f782297ec/dd483631c4a8301d11c4d47f782297ec3.gif)
![Biases-in-the-Risk-Cube-Incose在風(fēng)險(xiǎn)的立方體根據(jù)偏差課件_第4頁](http://file4.renrendoc.com/view/dd483631c4a8301d11c4d47f782297ec/dd483631c4a8301d11c4d47f782297ec4.gif)
![Biases-in-the-Risk-Cube-Incose在風(fēng)險(xiǎn)的立方體根據(jù)偏差課件_第5頁](http://file4.renrendoc.com/view/dd483631c4a8301d11c4d47f782297ec/dd483631c4a8301d11c4d47f782297ec5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
CognitiveBiases
inthe
RiskMatrixWilliamSiefert,M.S.
EricD.SmithBoeingSystemsEngineeringGraduateProgramMissouriUniversityofScienceandTechnology?2019SmithWilliamSiefert,M.S.“Fearofharmoughttobeproportionalnotmerelytothegravityoftheharm,butalsototheprobabilityoftheevent.”Logic,ortheArtofThinkingAntoineArnould,1662ConsequencexLikelihood=RiskRiskgraphingHyperboliccurvesHyperboliccurvesinlog-loggraphiso-risklines
5x5Risk“Cube”O(jiān)riginalCurrentObjectivevs.Subjectivedata"Campfireconversation"piecePresentSituationRiskmatricesarerecognizedbyindustryasthebestwayto:consistentlyquantifyrisks,aspartofarepeatableandquantifiableriskmanagementprocessRiskmatricesinvolvehuman:NumericaljudgmentCalibration–location,gradationRounding,CensoringDataupdatingoftenapproachedwithunderconfidenceoftendistrustedbydecisionmakersGoalRiskManagementimprovementandbetteruseoftheriskmatrixConfidenceincorrectassessmentofprobabilityandvalueAvoidanceofspecificmistakesRecommendedactionsHeuristicsandBiasesDanielKahnemanwontheNobelPrizeinEconomicsin2019"forhavingintegratedinsightsfrompsychologicalresearchintoeconomicscience,especiallyconcerninghumanjudgmentanddecision-makingunderuncertainty.“Similaritiesbetweencognitivebiasexperimentsandtheriskmatrixaxesshowthatriskmatricesaresusceptibletohumanbiases.AnchoringFirstimpressiondominatesallfurtherthought1-100wheeloffortunespunNumberofAfricannationsintheUnitedNations?Smallnumber,like12,thesubjectsunderestimatedLargenumber,like92,thesubjectsoverestimatedObviatingexpertopinionTheanalystholdsacircularbeliefthatexpertopinionorreviewisnotnecessarybecausenoevidencefortheneedofexpertopinionispresent.HeuristicsandBiasesPresenceofcognitivebiases–eveninextensiveandvettedanalyses–canneverberuledout.Innatehumanbiases,andexteriorcircumstances,suchastheframingorcontextofaquestion,cancompromiseestimates,judgmentsanddecisions.Itisimportanttonotethatsubjectsoftenmaintainastrongsensethattheyareactingrationallywhileexhibitingbiases.TerminologySubjectiveParametersLikelihood(L)Consequence(C)SubjectiveProbability,π(p)Utility(negative),U-(v)Shownon:Ordinate,YaxisAbscissa,XaxisObjectiveParametersObjectiveProbability,pObjectiveValue,v5x5Risk“Cube”O(jiān)riginalObjectivevs.Subjectivedata"Campfireconversation"pieceLikelihoodFrequency
ofoccurrenceisobjective,discreteProbabilityiscontinuous,fiction"Humansjudgeprobabilitiespoorly"[CosmidesandTooby,2019]Likelihoodisasubjectivejudgment (unlessmathematical)'Exposure'byprojectmanagertimelessConsequence,CObjectiveConsequencedeterminationiscostlyRangeofconsequenceTotallife-cyclecostMil-Std882d$damageHumanimpactEnvironmentLawCatastrophic>$1MDeath,DisabilityirreversibledamageViolateCritical:$1M-$200KHospitalizationto>=3personnelReversibledamageViolateMarginal:$200K-$10KLossofworkdays;injuryMitigationdamageNegligible:$10K-$2KNolostworkday;injuryMinimaldamageCaseStudyIndustryriskmatrixdata1412originalandcurrentriskpoints(665)TimeoffirstentryknownTimeoflastupdateknownCost,ScheduleandTechnicalknownSubjectmatternotknownBiasesrevealedLikelihoodandconsequencejudgmentMagnitudevs.Reliability[GriffinandTversky,1992]MagnitudeperceivedmorevalidDatawithoutstandingmagnitudesbutpoorreliabilityarelikelytobechosenandusedSuggestion:DatawithuniformsourcereliabilitySpeciousnessofdataObservation:riskmatricesaremagnitudedriven,withoutregardtoreliabilityExpectedDistributionfororiginalriskpointsinRiskMatrix?BivariateNormalUniform:1.EstimationinaPre-DefineScaleBias
Responsescaleeffectsjudgment[Schwarz,1990]Twoquestions,random50%ofsubjects:Pleaseestimatetheaveragenumberofhoursyouwatchtelevisionperweek:__________X_____________1-45-89-1213-1617-20MorePleaseestimatetheaveragenumberofhoursyouwatchtelevisionperweek:__________X_____________1-2 3-45-67-89-10MoreLikelihoodMarginalDistributionofOriginalPoints123455827275428840Normaldistributionwithμ=3.0,σ=0.783833067633038?=actual–normal20-5878-422(Χ2=22,LogisticΧ2>~10rejectH0H0=NormalEffectofEstimationinaPre-DefinedScale
‘Peopleestimateprobabilitiespoorly’[CosmidesandTooby,2019]Consequence/SeverityamplifiersEffectofEstimationinaPre-DefinedScale
‘Peopleestimateprobabilitiespoorly’[CosmidesandTooby,2019]Consequence/SeverityamplifiersSeverityAmplifiersLackofcontrolLackofchoiceLackoftrustLackofwarningLackofunderstandingManmadeNewnessDreadfulnessPersonalizationRecallabilityImminency5x5RiskMatrixSituationassessment5x5RiskMatricesseektoincreaseriskestimationconsistencyHypothesis:CognitiveBiasinformationcanhelpimprovethevalidityandsensitivityofriskmatrixanalysisProspectTheoryDecision-makingdescribedwithsubjectiveassessmentof:ProbabilitiesValuesandcombinationsingamblesProspectTheorybreakssubjectivedecisionmakinginto:preliminary‘screening’stage,probabilitiesandvaluesaresubjectivelyassessedsecondary‘evaluation’stagecombinesthesubjectiveprobabilitiesandutilitiesHumansjudgeprobabilitiespoorly*SubjectiveProbability,π(p)
smallprobabilitiesoverestimatedlargeprobabilitiesunderestimatedπ(p)=
(pδ)/[pδ+(1-p)δ](1/δ) p=objectiveprob. 0<δ≤1Whenδ=1,π(p)=p=objectiveprobabilityusualvalueforδ:
δ=0.69forlosses
δ=0.61forgainsGainsandlossesarenotequal*SubjectiveUtility
Valuesconsideredfromreferencepointestablishedbythesubject’swealthandperspectiveFramingGainsandlossesare subjectivelyvalued1-to-2ratio.Forgains:U+(v)=Ln(1+v)Forlosses:U-(v)=-(μ)Ln(1–cv) μ=2.5
c=constant
v=objectivevalue
ImplicationofProspectTheoryfortheRiskMatrixANALYSESANDOBSERVATIONS
OFINITIALDATA
Impedimentsfortheappearanceofcognitivebiasesintheindustrydata:IndustrydataaregranularwhilethepredictionsofProspectTheoryareforcontinuousdataQualitativedescriptionsof5rangesoflikelihoodandconsequencenon-linearinfluenceintheplacementofriskdatumpoints Nevertheless,theevidenceofcognitivebiasesemergesfromthedata2.DiagonalBiasAnticipationoflatermovingofriskpointstowardtheoriginRiskpointswithdrawnfromtheoriginupwardandrightwardalongthediagonalRegressionon1412OriginalPointsInterceptSlopeR2.20.220.223.ProbabilityCenteringBias
LikelihoodsarepushedtowardL=3SymmetrictoafirstorderImplicationofProspectTheoryfortheRiskMatrix3a.AsymmetricalProbabilityBiasSubjectiveprobabilitytransformationπ(p)predictsthatlikelihooddatawillbepushedtowardL=3LargeprobabilitiestranslateddownmorethansmallprobabilitiesaretranslatedupReducedamountoflargesubjectiveprobabilities,comparatively1234558272754288404.ConsequenceBias
ConsequenceispushedhigherEngineeridentifieswithincreasedrisktoentirecorporation'Personal'corporateriskStatisticalEvidenceforConsequenceBias
MaxatC=4C=1significantlylessthanC=5counts C=2significantlylessthanC=4ConsequenceOriginalDataPoints1234520145538599110Normaldistributioncomparison:χ2=600,df=40.0probabilityConsequencesmoothedConsequenceincreased,→,byAmplifiersH0=NormalConsequencetranslationLikelihoodmitigationrecommendationsEngineersandManagementTechnicalriskhighestpriorityScheduleriskcommunicatedwellbymanagementCostrisklikelihoodlessfrequentlycommunicatedbymanagement.
HighercognizanceofcostriskwillbevaluableattheengineeringlevelLikelihoodmitigation1.Technical2.Schedule3.CostConsequenceMitigationEngineers:ScheduleconsequenceseffectcareersTechnicalconsequenceseffectjobperformancereviewsCostconsequencesareremoteandassociatedwithmanagementHighercognizanceofcostriskwillbevaluableattheengineeringlevelConsequencemitigation1.Schedule2.Technical3.CostCONCLUSIONFirsttimethattheeffectsofcognitivebiaseshavebeendocumentedwithintheriskmatrixClearevidencethatprobabilityandvaluetranslations,aslikelihoodandconsequencejudgments,arepresentinindustryriskmatrixdataSteps1)thetranslationswerepredictedbyprospecttheory,2)historicaldataconfirmedpredictionsRiskmatricesarenotobjectivenumbergridsSubjective,albeituseful,meanstoverifythatriskitemshavereceivedrisk-mitigatingattention.DataCollectionImprovementsContinuumofdatafromRiskmanagementto(Issuemanagement)OpportunitymanagementDifferentdatabasesyearsofdataineachTimeWaterfallRiskchartsSuggestionsforriskmanagementimprovementObjectivebasisofrisk:FrequencydataforProbability$forConsequenceLong-term,institutionalrationalityTeamapproachIterationsPublicreviewExpertreviewBiasesanderrorsawarenessFutureworkConfirmationofthepresenceofprobabilitybiases,andvaluebiasesinriskdatafromotherindustrie
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年前列腺射頻治療儀系統(tǒng)行業(yè)深度研究分析報(bào)告
- 2025年船用裝飾材料項(xiàng)目投資可行性研究分析報(bào)告-20241226-205913
- 以租代買房合同范本
- 個(gè)人銷售欠款合同范本
- 關(guān)于公司承包合同范本
- 2025年度道路劃線施工與交通信號(hào)優(yōu)化合同范本
- 一汽解放車銷售合同范本
- 代理電商合同范本
- 代建房合同范本
- 《如何做一名好教師》課件
- 2016-2023年婁底職業(yè)技術(shù)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 貴陽市2024年高三年級(jí)適應(yīng)性考試(一)一模英語試卷(含答案)
- 地理標(biāo)志專題通用課件
- 魚類和淡水生態(tài)系統(tǒng)
- 全國(guó)大學(xué)高考百科匯編之《哈爾濱工業(yè)大學(xué)》簡(jiǎn)介
- 學(xué)校安全教育教你如何遠(yuǎn)離危險(xiǎn)
- 【人教版】九年級(jí)化學(xué)上冊(cè)全冊(cè)單元測(cè)試卷【1-7單元合集】
- 中國(guó)傳統(tǒng)文化課件6八卦五行
- 《胃癌課件:病理和分子機(jī)制解析》
- 口腔科導(dǎo)診分診技巧(PPT課件)
評(píng)論
0/150
提交評(píng)論