




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
::00:..【關(guān)鍵字】構(gòu)造名目
ABBIRB6600爭(zhēng)論報(bào)告機(jī)器人構(gòu)造簡(jiǎn)介ABB工業(yè)機(jī)器人可以用于實(shí)現(xiàn)噴霧、涂膠、物料搬運(yùn)、點(diǎn)焊等多種功能,是典型的機(jī)械臂,在網(wǎng)絡(luò)上可以查找到較多的相關(guān)資料。本次作業(yè)就選取ABBIRB6600機(jī)器人作為爭(zhēng)論對(duì)象,首先對(duì)其構(gòu)造進(jìn)展簡(jiǎn)潔簡(jiǎn)介。12ABBIRB6600是六自由度機(jī)器人,具有六個(gè)旋轉(zhuǎn)關(guān)節(jié),底座固定,通過(guò)各關(guān)節(jié)的旋轉(zhuǎn)可以完成三維空間內(nèi)的運(yùn)動(dòng)。圖1ABBIRB6600機(jī)器人的照片及工作范圍圖,圖2是其構(gòu)造簡(jiǎn)圖和各軸的轉(zhuǎn)動(dòng)的參數(shù)。機(jī)器人的運(yùn)動(dòng)學(xué)ABBIRB6600D-H建模并求出對(duì)應(yīng)的轉(zhuǎn)換JacobianJacobian變換矩陣。、機(jī)器人正運(yùn)動(dòng)學(xué)為了計(jì)算便利把機(jī)器人各關(guān)節(jié)前后兩連桿共線作為初始狀態(tài),畫(huà)出構(gòu)造簡(jiǎn)圖如圖3圖337實(shí)際上是末端執(zhí)行機(jī)構(gòu)。運(yùn)用學(xué)過(guò)的D-H建模方法建立模型,建模過(guò)程中為了便利畫(huà)出各關(guān)節(jié)坐標(biāo)系,將局部連桿進(jìn)展了拉長(zhǎng),且由于局部關(guān)節(jié)坐目標(biāo)Z軸垂直于紙面,所以用XY軸畫(huà)出坐標(biāo)系,用右手定則既得到對(duì)應(yīng)的Z軸。最終建立::1:..4:圖44D-H參數(shù)表:i變量范圍100[-180,180]2900[-65,80]300[-180,60]40-90[-300,300]5-900[-120,120]60-90[-300,300]7〔末端〕00——由此算出各關(guān)節(jié)變換矩陣:將這些關(guān)節(jié)坐標(biāo)變換矩陣連乘就得到了由基坐標(biāo)系到末端的坐標(biāo)變換矩陣:但是由于矩陣規(guī)模較大,不便用矩陣形式寫(xiě)出,所以把malab計(jì)算得出的矩陣用分項(xiàng)的形式寫(xiě)出:sin(θ1)*sin(θ6)+cos(θ6)*(cos(θ5)*(cos(θ1)*sin(θ2)*sin(θ3)-cos(θ1)*cos(θ2)*cos(θ3))+sin(θ5)*(cos(θ1)*cos(θ2)*sin(θ3)+cos(θ1)*cos(θ3)*sin(θ2)))cos(θ6)*sin(θ1)-sin(θ6)*(cos(θ5)*(cos(θ1)*sin(θ2)*sin(θ3)-cos(θ1)*cos(θ2)*cos(θ3))+sin(θ5)*(cos(θ1)*cos(θ2)*sin(θ3)+cos(θ1)*cos(θ3)*sin(θ2)))sin(θ5)*(cos(θ1)*sin(θ2)*sin(θ3)-cos(θ1)*cos(θ2)*cos(θ3))-cos(θ5)*(cos(θ1)*cos(θ2)*sin(θ3)+cos(θ1)*cos(θ3)*sin(θ2)),h5’*(cos(θ1)*sin(θ2)*sin(θ3)-cos(θ1)*cos(θ2)*cos(θ3))-h6*(cos(θ5)*(cos(θ1)*cos(θ2)*sin(θ3)+cos(θ1)*cos(θ3)*sin(θ2))-sin(θ5)*(cos(θ1)*sin(θ2)*sin(θ3)-cos(θ1)*cos(θ2)*cos(θ3)))-h7*(cos(θ5)*(cos(θ1)*cos(θ2)*sin(θ3)+cos(θ1)*cos(θ3)*sin(θ2))-sin(θ5)*(cos(θ1)*sin(θ2)*sin(θ3)-cos(θ1)*cos(θ2)*cos(θ3)))+h2’*cos(θ1)-(h4+h5)*(cos(θ1)*cos(θ2)*sin(θ3)+cos(θ1)*cos(θ3)*sin(θ2))+h7’*(sin(θ1)*sin(θ6)+cos(θ6)*(cos(θ5)*(cos(θ1)*sin(θ2)*sin(θ3)-cos(θ1)*cos(θ2)*cos(θ3))+sin(θ5)*(cos(θ1)*cos(θ2)*sin(θ3)+cos(θ1)*cos(θ3)*sin(θ2))))-h3*cos(θ1)*sin(θ2)cos(θ6)*(cos(θ5)*(sin(θ1)*sin(θ2)*sin(θ3)-cos(θ2)*cos(θ3)*sin(θ1))+sin(θ5)*(cos(θ2)*sin(θ1)*sin(θ3)+cos(θ3)*sin(θ1)*sin(θ2)))-cos(θ1)*sin(θ6),-cos(θ1)*cos(θ6)-sin(θ6)*(cos(θ5)*(sin(θ1)*sin(θ2)*sin(θ3)-cos(θ2)*cos(θ3)*sin(θ1))+sin(θ5)*(cos(θ2)*sin(θ1)*sin(θ3)+cos(θ3)*sin(θ1)*sin(θ2)))sin(θ5)*(sin(θ1)*sin(θ2)*sin(θ3)-cos(θ2)*cos(θ3)*sin(θ1))-cos(θ5)*(cos(θ2)*sin(θ1)*sin(θ3)+cos(θ3)*sin(θ1)*sin(θ2)),sin(θ5)*(sin(θ1)*sin(θ2)*sin(θ3)-cos(θ2)*cos(θ3)*sin(θ1))-cos(θ5)*(cos(θ2)*sin(θ1)*sin(θ3)+cos(θ3)*sin(θ1)*sin(θ2)),h5’*(sin(θ1)*sin(θ2)*sin(θ3)-cos(θ2)*cos(θ3)*sin(θ1))-h7’*(cos(θ1)*sin(θ6)-cos(θ6)*(cos(θ5)*(sin(θ1)*sin(θ2)*sin(θ3)-cos(θ2)*cos(θ3)*sin(θ1))+sin(θ5)*(cos(θ2)*sin(θ1)*sin(θ3)+cos(θ3)*sin(θ1)*sin(θ2))))-h6*(cos(θ5)*(cos(θ2)*sin(θ1)*sin(θ3)+cos(θ3)*sin(θ1)*sin(θ2))-sin(θ5)*(sin(θ1)*sin(θ2)*sin(θ3)-cos(θ2)*cos(θ3)*sin(θ1)))-h7*(cos(θ5)*(cos(θ2)*sin(θ1)*sin(θ3)+cos(θ3)*sin(θ1)*sin(θ2))-sin(θ5)*(sin(θ1)*sin(θ2)*sin(θ3)-cos(θ2)*cos(θ3)*sin(θ1)))+h2’*sin(θ1)-(h4+h5)*(cos(θ2)*sin(θ1)*sin(θ3)+cos(θ3)*sin(θ1)*sin(θ2))-h3*sin(θ1)*sin(θ2)-cos(θ6)*(cos(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))+sin(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3))),sin(θ6)*(cos(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))+sin(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3))),cos(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3))-sin(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2)),h1+h2+(h4+h5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3))-h5’*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))+h3*cos(θ2)+h6*(cos(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3))-sin(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2)))+h7*(cos(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3))-sin(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2)))-h7’*cos(θ6)*(cos(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))+sin(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3)))用各關(guān)節(jié)轉(zhuǎn)角的初值來(lái)檢查變換矩陣內(nèi)的正確性:設(shè):代入各關(guān)節(jié)變換矩陣可以求出各矩陣初值,由于中沒(méi)有關(guān)節(jié)變量,所以保持不變記為矩陣g圖5將圖5中的初值矩陣連乘可以得到基坐標(biāo)系到末端坐標(biāo)系的變換矩陣:6:圖6觀看圖6中的矩陣,檢查初始狀態(tài)末端坐標(biāo)系在基坐標(biāo)系的位姿,很簡(jiǎn)潔看出:在中的坐標(biāo)為,并且與反向,與反向,與同向,這與D-H建模圖〔圖4〕中所得到的結(jié)果一樣,可以確定計(jì)算過(guò)程是正確的。、機(jī)器人逆運(yùn)動(dòng)學(xué)Jacobian法進(jìn)展機(jī)器人逆運(yùn)動(dòng)學(xué)的求解。首先已經(jīng)列出的,可以依次求出matlab計(jì)算過(guò)程中:把依次記作a,b,c,d,e,f把記作〔sitai〕計(jì)算結(jié)果如下:6T由于2 矩陣元素表達(dá)式較簡(jiǎn)潔,不便列出整個(gè)矩陣,所以逐列寫(xiě)出:第一列:其次列:第三列:第四列:6T 6T由于1 比2 的矩陣元素表達(dá)式更為簡(jiǎn)潔,所以逐項(xiàng)列出:-cos(θ6)*(cos(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3))-sin(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))),sin(θ6)*(cos(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3))-sin(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))),-cos(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))-sin(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3)),h2’-(h4+h5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))-h5’*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3))-h3*sin(θ2)-h6*(cos(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))+sin(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3)))21a -sin(θ6),2122a -cos(θ6),22-cos(θ6)*(cos(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))+sin(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3)))sin(θ6)*(cos(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))+sin(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3))),cos(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3))-sin(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2)),(h4+h5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3))-h5’*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))+h3*cos(θ2)+h6*(cos(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3))-sin(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2)))066T與正運(yùn)動(dòng)學(xué)計(jì)算00時(shí)求得的7T除了最終一列之外完全一樣,下面寫(xiě)出最終一列的元素:0h5’*(cos(θ1)*sin(θ2)*sin(θ3)-cos(θ1)*cos(θ2)*cos(θ3))-h6*(cos(θ5)*(cos(θ1)*cos(θ2)*sin(θ3)+cos(θ1)*cos(θ3)*sin(θ2))-sin(θ5)*(cos(θ1)*sin(θ2)*sin(θ3)-cos(θ1)*cos(θ2)*cos(θ3)))+h2’*cos(θ1)-(h4+h5)*(cos(θ1)*cos(θ2)*sin(θ3)+cos(θ1)*cos(θ3)*sin(θ2))-h3*cos(θ1)*sin(θ2)h5’*(sin(θ1)*sin(θ2)*sin(θ3)-cos(θ2)*cos(θ3)*sin(θ1))-h6*(cos(θ5)*(cos(θ2)*sin(θ1)*sin(θ3)+cos(θ3)*sin(θ1)*sin(θ2))-sin(θ5)*(sin(θ1)*sin(θ2)*sin(θ3)-cos(θ2)*cos(θ3)*sin(θ1)))+h2’*sin(θ1)-(h4+h5)*(cos(θ2)*sin(θ1)*sin(θ3)+cos(θ3)*sin(θ1)*sin(θ2))-h3*sin(θ1)*sin(θ2)H1+h2+(h4+h5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3))-h5’*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))+h3*cos(θ2)+h6*(cos(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3))-sin(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2)))利用求出各關(guān)節(jié)到末端的坐標(biāo)變換矩陣,可以求出Jacobian矩陣各列。Jacobian矩陣第iJ的計(jì)算方法如下:in o ax x
px pn
pnn o a pyyyy
z x
y x6T y yi1 n o a
p,并且
poz
po x y
poy xz z z z
pa pa pa0 0 0 1
z x y y xpnpoz zpa 那么:Ji n z z o az z z依據(jù)此公式可以算出Jacobian矩陣的各列:sin(θ6)*(cos(θ3)*sin(θ5)+cos(θ5)*sin(θ3))*(h3+h6*(cos(θ3)*cos(θ5)-sin(θ3)*sin(θ5))+cos(θ3)*(h4+h5)-h5’*sin(θ3))+cos(θ6)*(cos(θ3)*sin(θ5)+cos(θ5)*sin(θ3))*(h6*(cos(θ3)*sin(θ5)+cos(θ5)*sin(θ3))+sin(θ3)*(h4+h5)+h5’*cos(θ3))-sin(θ6)*(cos(θ3)*cos(θ5)-sin(θ3)*sin(θ5))*(h3+h6*(cos(θ3)*cos(θ5)-sin(θ3)*sin(θ5))+cos(θ3)*(h4+h5)-h5’*sin(θ3))-cos(θ6)*(cos(θ3)*cos(θ5)-sin(θ3)*sin(θ5))*(h6*(cos(θ3)*sin(θ5)+cos(θ5)*sin(θ3))+sin(θ3)*(h4+h5)+h5’*cos(θ3)),cos(θ6)*(h3+h6*(cos(θ3)*cos(θ5)-sin(θ3)*sin(θ5))+cos(θ3)*(h4+h5)-h5’*sin(θ3))-sin(θ6)*(h6*(cos(θ3)*sin(θ5)+cos(θ5)*sin(θ3))+sin(θ3)*(h4+h5)+h5’*cos(θ3))]cos(θ3)*cos(θ5)-sin(θ3)*sin(θ5)cos(θ3)*sin(θ5)+cos(θ5)*sin(θ3),0,-sin(θ6)*(cos(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3))-sin(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2)))*((h4+h5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))-h2’+h5’*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3))+h3*sin(θ2)+h6*(cos(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))+sin(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3)))),cos(θ6)*((h4+h5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))-h2’+h5’*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3))+h3*sin(θ2)+h6*(cos(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))+sin(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3)))),-sin(θ6)*(cos(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))+sin(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3)))*((h4+h5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))-h2’+h5’*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3))+h3*sin(θ2)+h6*(cos(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))+sin(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3))))-cos(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))-sin(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3)),0,cos(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3))-sin(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2)),(sin(θ1)*sin(θ6)+cos(θ6)*(cos(θ5)*(cos(θ1)*sin(θ2)*sin(θ3)-cos(θ1)*cos(θ2)*cos(θ3))+sin(θ5)*(cos(θ1)*cos(θ2)*sin(θ3)+cos(θ1)*cos(θ3)*sin(θ2))))*(h6*(cos(θ5)*(cos(θ2)*sin(θ1)*sin(θ3)+cos(θ3)*sin(θ1)*sin(θ2))-sin(θ5)*(sin(θ1)*sin(θ2)*sin(θ3)-cos(θ2)*cos(θ3)*sin(θ1)))-h5’*(sin(θ1)*sin(θ2)*sin(θ3)-cos(θ2)*cos(θ3)*sin(θ1))-h2’*sin(θ1)+(h4+h5)*(cos(θ2)*sin(θ1)*sin(θ3)+cos(θ3)*sin(θ1)*sin(θ2))+h3*sin(θ1)*sin(θ2))-(cos(θ6)*sin(θ1)-sin(θ6)*(cos(θ5)*(cos(θ1)*sin(θ2)*sin(θ3)-cos(θ1)*cos(θ2)*cos(θ3))+sin(θ5)*(cos(θ1)*cos(θ2)*sin(θ3)+cos(θ1)*cos(θ3)*sin(θ2))))*(h6*(cos(θ5)*(cos(θ1)*cos(θ2)*sin(θ3)+cos(θ1)*cos(θ3)*sin(θ2))-sin(θ5)*(cos(θ1)*sin(θ2)*sin(θ3)-cos(θ1)*cos(θ2)*cos(θ3)))-h5’*(cos(θ1)*sin(θ2)*sin(θ3)-cos(θ1)*cos(θ2)*cos(θ3))-h2’*cos(θ1)+(h4+h5)*(cos(θ1)*cos(θ2)*sin(θ3)+cos(θ1)*cos(θ3)*sin(θ2))+h3*cos(θ1)*sin(θ2)),(cos(θ1)*cos(θ6)+sin(θ6)*(cos(θ5)*(sin(θ1)*sin(θ2)*sin(θ3)-cos(θ2)*cos(θ3)*sin(θ1))+sin(θ5)*(cos(θ2)*sin(θ1)*sin(θ3)+cos(θ3)*sin(θ1)*sin(θ2))))*(h6*(cos(θ5)*(cos(θ1)*cos(θ2)*sin(θ3)+cos(θ1)*cos(θ3)*sin(θ2))-sin(θ5)*(cos(θ1)*sin(θ2)*sin(θ3)-cos(θ1)*cos(θ2)*cos(θ3)))-h5’*(cos(θ1)*sin(θ2)*sin(θ3)-cos(θ1)*cos(θ2)*cos(θ3))-h2’*cos(θ1)+(h4+h5)*(cos(θ1)*cos(θ2)*sin(θ3)+cos(θ1)*cos(θ3)*sin(θ2))+h3*cos(θ1)*sin(θ2))-(cos(θ1)*sin(θ6)-cos(θ6)*(cos(θ5)*(sin(θ1)*sin(θ2)*sin(θ3)-cos(θ2)*cos(θ3)*sin(θ1))+sin(θ5)*(cos(θ2)*sin(θ1)*sin(θ3)+cos(θ3)*sin(θ1)*sin(θ2))))*(h6*(cos(θ5)*(cos(θ2)*sin(θ1)*sin(θ3)+cos(θ3)*sin(θ1)*sin(θ2))-sin(θ5)*(sin(θ1)*sin(θ2)*sin(θ3)-cos(θ2)*cos(θ3)*sin(θ1)))-h5’*(sin(θ1)*sin(θ2)*sin(θ3)-cos(θ2)*cos(θ3)*sin(θ1))-h2’*sin(θ1)+(h4+h5)*(cos(θ2)*sin(θ1)*sin(θ3)+cos(θ3)*sin(θ1)*sin(θ2))+h3*sin(θ1)*sin(θ2)),-cos(θ6)*(cos(θ5)*(cos(θ2)*sin(θ3)+cos(θ3)*sin(θ2))+sin(θ5)*(cos(θ2)*cos(θ3)-sin(θ2)*sin(θ3)))*(h6*(cos(θ5)*(cos(θ2)*sin(θ1)*sin(θ3)+cos(θ3)*sin(θ1)*sin(θ2))-sin(θ5)*(sin(θ1)*sin(θ2)*sin(θ3)-cos(θ2)*cos(θ
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)人優(yōu)點(diǎn)總結(jié)20篇
- 下半年個(gè)人工作計(jì)劃
- 中醫(yī)康復(fù)治療技術(shù)模擬練習(xí)題(含參考答案)
- 游泳救生員初級(jí)題庫(kù)與參考答案
- 推拿治療學(xué)試題含答案
- 一通三防工作總結(jié)
- 買(mǎi)房同中介合同范本
- 口罩購(gòu)銷合同范本模板
- 出售混凝土檁條合同范本
- 住宅小區(qū)車位轉(zhuǎn)讓合同范本
- 圖形的平移與旋轉(zhuǎn)壓軸題(7個(gè)類型55題)-【???jí)狠S題】2023-2024學(xué)年八年級(jí)數(shù)學(xué)下冊(cè)壓軸題攻略(解析版)
- TDALN 033-2024 學(xué)生飲用奶安全規(guī)范入校管理標(biāo)準(zhǔn)
- 2024至2030年全球及中國(guó)標(biāo)準(zhǔn)履帶挖掘機(jī)行業(yè)研究及十四五規(guī)劃分析報(bào)告
- 各地分布式光伏項(xiàng)目電價(jià)對(duì)比
- 2024年綠化工職業(yè)技能理論知識(shí)考試題庫(kù)(含答案)
- 醫(yī)學(xué)檢驗(yàn)技術(shù)專業(yè)《血液學(xué)檢驗(yàn)》課程標(biāo)準(zhǔn)
- 2024年江蘇食品藥品職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)有完整答案
- 員工服務(wù)意識(shí)提升提高服務(wù)意識(shí)培訓(xùn)課件
- 2024年黑龍江農(nóng)業(yè)工程職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)1套
- 學(xué)前兒童游戲智慧樹(shù)知到期末考試答案章節(jié)答案2024年麗水學(xué)院
- 2023-2024學(xué)年高中政治統(tǒng)編版必修三第四課 人民民主專政的社會(huì)主義國(guó)家 同步練習(xí)
評(píng)論
0/150
提交評(píng)論