講義課件說(shuō)明random thoughts on kdd_第1頁(yè)
講義課件說(shuō)明random thoughts on kdd_第2頁(yè)
講義課件說(shuō)明random thoughts on kdd_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Monday,September07,2015

ThoughtsonKDD2015

LastmonthIattendedKDD2015inbeautifulSydney,Australia.Forthosewhodon'tknow,KDDisthe internationalconferenceforappliedmachinelearning&datamining,andisoftenthevenueforsomeofthemostinterestingdata ysisresearchprojects.

DespiteconcernsthatKDD2015wouldbealetdownafterKDD2014wassuchagreatsuccessinNewYorkCity,overallKDD2015wasafantasticconference,withanexcellentlineupofinvitedspeakersandplentyofinterestingpapers.CongratulationsalsotomyPhDadvisorThorstenJoachims,whonotonlydidagreatjobasPCCo-Chair,butalsowastherecipientofaTestofTimeAwardforhisworkonOptimizingSearchEnginesusingClickthroughData.

DataScienceforScience

OneofthebiggestthemesatKDD2015wasapplyingdatasciencetosupportthesciences,whichissomethingthat'sbeenonmymindalotrecently.HughDurrant-Whitegaveagreatkeynoteonapplyingmachinelearningtodiscoveryprocessesingeologyandecology.Onethingthatjumpedoutofhistalkwashowchallengingitistodevelopmodelsthatareinterpretableto experts.Thisissueisamelioratedinhissettingsbecausehelargelyfocusedonspatialmodelswhichareeasiertovisualizeandinterpret.

SusanAtheygaveanotherkeynoteontheinterybetweenmachinelearningandcausalinferenceinevaluation,whichisanimportantissueforthesciencesaswell.Imustadmit,mostofthetalkwentovermyhead,buttherewassomeinterestingdebateafterthetalkaboutwhethercausalityshouldbethegoalorratherjustmore"robust"correlations(whateverthatmightmean).

IalsoreallyenjoyedtheData-DrivenSciencePanel,wherethedebategotquiteheatedattimes.Twoissuesinparticularstoodout.First,whatshouldbetheroleofmachinelearninganddataminingexpertsintheecosystemofdata-drivenscience?Onetheonehand,computerscientistshavehistoricallyhadalargeimpactbydevelosystemsandtformsthat awaylow-levelcomplexityandempowerusertobemoreproductive.However,howtoachievesuchasolutioninadata-richworldisamuessier(oratleastdifferent)typeofendeavor.Thereare,ofcourse,plentyofstartupsthataddressaspectsofthisproblem,butagenuinescalablesolutionforscienceremainselusive.

Asecondissuethatwasraisedwaswhethercomputationalresearchershavemademuchofadirectimpactonthesciences.Theparticulararea,raisedbyTinaEliassi-Rad,isthesocialsciences.Machinelearninganddatamininghavetakengreatinterestincomputationalsocialscienceviastudyinglargesocialnetworks.However,itisnotcleartowhatextentcomputationalresearchershavedirectlymadeanimpacttotraditionalsocialsciencefields.Ofcourse,thisissueistiedbacktowhattheroleofcomputationalresearchersshouldbe.Ontheonehand,manysocialscientistsdousetoolsmadebycomputationalpeople,sotheindirectimpactisquiteclear.Doesitreallymatterthattherehasn'tbeenmuchdirectimpact?

UpdateonMOOCs

DaphneKollergaveagreatkeynoteonthestateofMOOCsandCourserainparticular.ItseemsthatMOOCsnowadaysaremuchsmarterabouttheirconsumerbase,andhavediversifiedthewaytheydelivercontentandmeasuresuccessforawiderangeofstudents.Forexample,peoplenowunderstandmuchbetterthedifferentneedsofcollegeaspirants(whouseMOOCstosupplicanthighschool&collegeeducation)versusyoungprofessionals(whouseMOOCstogetaheadintheircareers)versusthoseseekingvocationalskills(whichisverypopularinlessdevelopedcountries).

OnestrikingomissionthatwaspointedoutduringtheQ&AwasthatMOOCshavemostlyabandonedthepre-collegedemographic,especiallybeforehighschool.Inretrospect,thisisnottoosurprising,inlargepartduetotheverydifferentrequirementsforprimaryandsecondaryeducationacrossdifferentstatesandschooldistricts.ButitdoesputadamperonthecurrentMOOCenthusiasm,sincemanyproblemswitheducationstartmuchearlierthancollege.

LessonsLearnedfromLarge-ScaleA/BTesting

RonKohavigaveakeynoteonlessonslearnedfromonlineA/Btesting.Themostinterestingaspectofhistalkwasjusthowwell-tunedtheexistingsystemsare.Onesymptomofahighlytunedsystemisthatit esverydifficulttointuitaboutwhethercertainmodificationswillincreaseordecreasetheperformanceofthesystem(orhavenoeffect).Forexample,hegavetheaudienceanumberofquestionstotheaudience,suchas:"Doesincreasingthedescriptionofthesponsoredadvertisementsleadtoincreasedoverallclicksonads?"Basically,theaudiencecouldnotguessbetterthanrandom.Sothemainlessonistobasicallytofollowthedataanddon'tbeto(emotionally)tiedtoyourownintuitionswhenitcomestooptimizinglargecomplexindustrialsystems.

Sports yticsWorkshop

Ico-organizedthe2ndworkshoponLarge-ScaleSportsytics.ItriedtogetmoreeSportsintotheworkshopthisyear,butalasfellabitshort.ThorstendidgiveaninterestingtalkthatusedeSportsdata,althoughthephenomenonhewasstudyingwasnotspecifictoeSports.Inmanyways,eSportsisanevenbettertestbedforsportsyticsthantraditionalsportsbecausegamereystrack

li llyeverything.

Withinthemoretraditionalsportsregimes,it'sclearth cesstodataremainsalargebottleneck.Manyprofessionalleaguesarehoardingtheirdatalikegold,butsadlydonothavetheexpertiseleveragethedataeffectively.ThesituationactuallyseemsbetterinEurope,whereaccesstotrackedsoccer(sorry,futbol)gamesarerelativelycommon.IntheUS,itseemslikethedataisonlyavailabletoaselectfewsportsyticscompaniessuchasSecondSpectrum.I'mhopefulthatthissituationwillchangeinthenearfutureasthevariousstakeholders emorecomfortablewiththeideathatit'snottherawdatathathasvalue,buttheprocessedartifactsbuiltontopofthatdata.

InterestingPapers

TherewereplentyofinterestingresearchpapersatKDD,ofwhichI'lljustlistafewthatIparticularlyliked.

ADecisionTreeFrameworkforSpatiotemporalSequencePrediction

byTaehwanKim,YisongYue,SarahTaylor,andIainMatthews

I'llstartwithashamelesspieceofself-advertising.IncollaborationwithDisneyResearch,wetrainedamodeltogeneratevisualspeech,i.e.,animatethelowerfaceinresponsetoaudioorphoneticinputs.Seethedemobelow:

Moredetailshere.

InsideJokes:IdentifyingHumorousCartoonCaptions

byDafnaShahaf,EricHorvitz,andRobertMankoff

ProbablythemostinterestingapplicationatKDDwasonstudyingtheanatomyofajoke.Whiletheresultsmaynotseemtoosurprisinginretrospect(e.g.,thepunchlineshouldbeatofthejoke),whatwasreallycoolwasthatthemodelcouldfyifonejokewasfunnierthananotherjoke(i.e.,rankjokes).

CinemaDataMining:TheSmellofFear

byJ?rgWicker,NicolasKrauter,BettinaDerstorff,ChristofSt?nner,EfstratiosBourtsoukidis,ThomasKlüpfel,JonathanWilliams,andStefanKramer

Thiswasacoolpaperthatstudiedhowtheexhaledorganicparticlesvaryinresponsetodifferentemotions.Theauthorsinstrumentedamovietheater'saircirculationsystemwithchemicalsensors,andfoundthatthechemicalsyouexhaleareindicativeofvariousemotionssuchasfearoramusement.Theauthorrepeatedlylamentedthefactthattheydidn'tdothisforanyeroticfi,andsotheydon'tknowwhatthecinematicchemicalsignatureofarousalwouldlooklike.

WhosupportedObamain2012?Ecologicalinferencethroughdistributionregression

bySethFlaxman,Yu-XiangWang,andAlexSmola

Thispaperpresentsanewsolutiontotheecologicalinferenceproblemofinferringindividuallevelpreferencesfromaggregatedata.Theprimarydatatestbedwerecounty-wiseelection esanddemographicdatathatreportedatadifferentgranularityoroverlay.Themainissueishowtoestimate,e.g.,femalepreferenceforoneialcandidate,usingjustthesekindsofaggregatedata.

Certifyingandremovingdisparateimpact

byMichaelFeldman,SorelleFriedler,JohnMoeller,CarlosScheidegger,andSureshVenkatasubramanian

Manypeopleassumethat,becausealgorithmsare"objective"thentheycan'tbebiasedordiscriminatory.Thisassumptionisinvalidbecausethedataorfeaturesthemselvescanbebiased(cf.thisinterviewwithCynthiaDwork).Theauthorsofthispaperproposeawaytodetect&removebiasinmachinelearningmodelsthatistailoredtotheUSlegaldefinitionofbias.Theworkis,ofcourse,preliminary,butthispaperwasarguablythemostthoughtprovokingoftheentireconference.

Edge-WeightedalizedPageRank:BreakingADecade-OldPerformanceBarrier

byWenleiXie,DavidBindel,AlanDemers,andJohannesGehrke

Thispaperproposesareductionapproachto alizedPageRankthatyieldsacomputationalboostbyseveralordersofmagnitude,thusallowing,forthefirsttime, alizePageRanktobecomputedatinctivespeeds.Thispaperwasalsotherecipientofthebestpaperaward.

PostedbyYisongYueat3:48PM

Labels:computerscience,machinelearning,science/technology

2comments:

BrendanO'Connorsaid...

whethercomputationalresearchershavemademuchofadirectimpactonthesciences--it'sagoodpointthatonlyasmallamountofcomputationalworkonostensiblesocialtopics

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論