下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Monday,September07,2015
ThoughtsonKDD2015
LastmonthIattendedKDD2015inbeautifulSydney,Australia.Forthosewhodon'tknow,KDDisthe internationalconferenceforappliedmachinelearning&datamining,andisoftenthevenueforsomeofthemostinterestingdata ysisresearchprojects.
DespiteconcernsthatKDD2015wouldbealetdownafterKDD2014wassuchagreatsuccessinNewYorkCity,overallKDD2015wasafantasticconference,withanexcellentlineupofinvitedspeakersandplentyofinterestingpapers.CongratulationsalsotomyPhDadvisorThorstenJoachims,whonotonlydidagreatjobasPCCo-Chair,butalsowastherecipientofaTestofTimeAwardforhisworkonOptimizingSearchEnginesusingClickthroughData.
DataScienceforScience
OneofthebiggestthemesatKDD2015wasapplyingdatasciencetosupportthesciences,whichissomethingthat'sbeenonmymindalotrecently.HughDurrant-Whitegaveagreatkeynoteonapplyingmachinelearningtodiscoveryprocessesingeologyandecology.Onethingthatjumpedoutofhistalkwashowchallengingitistodevelopmodelsthatareinterpretableto experts.Thisissueisamelioratedinhissettingsbecausehelargelyfocusedonspatialmodelswhichareeasiertovisualizeandinterpret.
SusanAtheygaveanotherkeynoteontheinterybetweenmachinelearningandcausalinferenceinevaluation,whichisanimportantissueforthesciencesaswell.Imustadmit,mostofthetalkwentovermyhead,buttherewassomeinterestingdebateafterthetalkaboutwhethercausalityshouldbethegoalorratherjustmore"robust"correlations(whateverthatmightmean).
IalsoreallyenjoyedtheData-DrivenSciencePanel,wherethedebategotquiteheatedattimes.Twoissuesinparticularstoodout.First,whatshouldbetheroleofmachinelearninganddataminingexpertsintheecosystemofdata-drivenscience?Onetheonehand,computerscientistshavehistoricallyhadalargeimpactbydevelosystemsandtformsthat awaylow-levelcomplexityandempowerusertobemoreproductive.However,howtoachievesuchasolutioninadata-richworldisamuessier(oratleastdifferent)typeofendeavor.Thereare,ofcourse,plentyofstartupsthataddressaspectsofthisproblem,butagenuinescalablesolutionforscienceremainselusive.
Asecondissuethatwasraisedwaswhethercomputationalresearchershavemademuchofadirectimpactonthesciences.Theparticulararea,raisedbyTinaEliassi-Rad,isthesocialsciences.Machinelearninganddatamininghavetakengreatinterestincomputationalsocialscienceviastudyinglargesocialnetworks.However,itisnotcleartowhatextentcomputationalresearchershavedirectlymadeanimpacttotraditionalsocialsciencefields.Ofcourse,thisissueistiedbacktowhattheroleofcomputationalresearchersshouldbe.Ontheonehand,manysocialscientistsdousetoolsmadebycomputationalpeople,sotheindirectimpactisquiteclear.Doesitreallymatterthattherehasn'tbeenmuchdirectimpact?
UpdateonMOOCs
DaphneKollergaveagreatkeynoteonthestateofMOOCsandCourserainparticular.ItseemsthatMOOCsnowadaysaremuchsmarterabouttheirconsumerbase,andhavediversifiedthewaytheydelivercontentandmeasuresuccessforawiderangeofstudents.Forexample,peoplenowunderstandmuchbetterthedifferentneedsofcollegeaspirants(whouseMOOCstosupplicanthighschool&collegeeducation)versusyoungprofessionals(whouseMOOCstogetaheadintheircareers)versusthoseseekingvocationalskills(whichisverypopularinlessdevelopedcountries).
OnestrikingomissionthatwaspointedoutduringtheQ&AwasthatMOOCshavemostlyabandonedthepre-collegedemographic,especiallybeforehighschool.Inretrospect,thisisnottoosurprising,inlargepartduetotheverydifferentrequirementsforprimaryandsecondaryeducationacrossdifferentstatesandschooldistricts.ButitdoesputadamperonthecurrentMOOCenthusiasm,sincemanyproblemswitheducationstartmuchearlierthancollege.
LessonsLearnedfromLarge-ScaleA/BTesting
RonKohavigaveakeynoteonlessonslearnedfromonlineA/Btesting.Themostinterestingaspectofhistalkwasjusthowwell-tunedtheexistingsystemsare.Onesymptomofahighlytunedsystemisthatit esverydifficulttointuitaboutwhethercertainmodificationswillincreaseordecreasetheperformanceofthesystem(orhavenoeffect).Forexample,hegavetheaudienceanumberofquestionstotheaudience,suchas:"Doesincreasingthedescriptionofthesponsoredadvertisementsleadtoincreasedoverallclicksonads?"Basically,theaudiencecouldnotguessbetterthanrandom.Sothemainlessonistobasicallytofollowthedataanddon'tbeto(emotionally)tiedtoyourownintuitionswhenitcomestooptimizinglargecomplexindustrialsystems.
Sports yticsWorkshop
Ico-organizedthe2ndworkshoponLarge-ScaleSportsytics.ItriedtogetmoreeSportsintotheworkshopthisyear,butalasfellabitshort.ThorstendidgiveaninterestingtalkthatusedeSportsdata,althoughthephenomenonhewasstudyingwasnotspecifictoeSports.Inmanyways,eSportsisanevenbettertestbedforsportsyticsthantraditionalsportsbecausegamereystrack
li llyeverything.
Withinthemoretraditionalsportsregimes,it'sclearth cesstodataremainsalargebottleneck.Manyprofessionalleaguesarehoardingtheirdatalikegold,butsadlydonothavetheexpertiseleveragethedataeffectively.ThesituationactuallyseemsbetterinEurope,whereaccesstotrackedsoccer(sorry,futbol)gamesarerelativelycommon.IntheUS,itseemslikethedataisonlyavailabletoaselectfewsportsyticscompaniessuchasSecondSpectrum.I'mhopefulthatthissituationwillchangeinthenearfutureasthevariousstakeholders emorecomfortablewiththeideathatit'snottherawdatathathasvalue,buttheprocessedartifactsbuiltontopofthatdata.
InterestingPapers
TherewereplentyofinterestingresearchpapersatKDD,ofwhichI'lljustlistafewthatIparticularlyliked.
ADecisionTreeFrameworkforSpatiotemporalSequencePrediction
byTaehwanKim,YisongYue,SarahTaylor,andIainMatthews
I'llstartwithashamelesspieceofself-advertising.IncollaborationwithDisneyResearch,wetrainedamodeltogeneratevisualspeech,i.e.,animatethelowerfaceinresponsetoaudioorphoneticinputs.Seethedemobelow:
Moredetailshere.
InsideJokes:IdentifyingHumorousCartoonCaptions
byDafnaShahaf,EricHorvitz,andRobertMankoff
ProbablythemostinterestingapplicationatKDDwasonstudyingtheanatomyofajoke.Whiletheresultsmaynotseemtoosurprisinginretrospect(e.g.,thepunchlineshouldbeatofthejoke),whatwasreallycoolwasthatthemodelcouldfyifonejokewasfunnierthananotherjoke(i.e.,rankjokes).
CinemaDataMining:TheSmellofFear
byJ?rgWicker,NicolasKrauter,BettinaDerstorff,ChristofSt?nner,EfstratiosBourtsoukidis,ThomasKlüpfel,JonathanWilliams,andStefanKramer
Thiswasacoolpaperthatstudiedhowtheexhaledorganicparticlesvaryinresponsetodifferentemotions.Theauthorsinstrumentedamovietheater'saircirculationsystemwithchemicalsensors,andfoundthatthechemicalsyouexhaleareindicativeofvariousemotionssuchasfearoramusement.Theauthorrepeatedlylamentedthefactthattheydidn'tdothisforanyeroticfi,andsotheydon'tknowwhatthecinematicchemicalsignatureofarousalwouldlooklike.
WhosupportedObamain2012?Ecologicalinferencethroughdistributionregression
bySethFlaxman,Yu-XiangWang,andAlexSmola
Thispaperpresentsanewsolutiontotheecologicalinferenceproblemofinferringindividuallevelpreferencesfromaggregatedata.Theprimarydatatestbedwerecounty-wiseelection esanddemographicdatathatreportedatadifferentgranularityoroverlay.Themainissueishowtoestimate,e.g.,femalepreferenceforoneialcandidate,usingjustthesekindsofaggregatedata.
Certifyingandremovingdisparateimpact
byMichaelFeldman,SorelleFriedler,JohnMoeller,CarlosScheidegger,andSureshVenkatasubramanian
Manypeopleassumethat,becausealgorithmsare"objective"thentheycan'tbebiasedordiscriminatory.Thisassumptionisinvalidbecausethedataorfeaturesthemselvescanbebiased(cf.thisinterviewwithCynthiaDwork).Theauthorsofthispaperproposeawaytodetect&removebiasinmachinelearningmodelsthatistailoredtotheUSlegaldefinitionofbias.Theworkis,ofcourse,preliminary,butthispaperwasarguablythemostthoughtprovokingoftheentireconference.
Edge-WeightedalizedPageRank:BreakingADecade-OldPerformanceBarrier
byWenleiXie,DavidBindel,AlanDemers,andJohannesGehrke
Thispaperproposesareductionapproachto alizedPageRankthatyieldsacomputationalboostbyseveralordersofmagnitude,thusallowing,forthefirsttime, alizePageRanktobecomputedatinctivespeeds.Thispaperwasalsotherecipientofthebestpaperaward.
PostedbyYisongYueat3:48PM
Labels:computerscience,machinelearning,science/technology
2comments:
BrendanO'Connorsaid...
whethercomputationalresearchershavemademuchofadirectimpactonthesciences--it'sagoodpointthatonlyasmallamountofcomputationalworkonostensiblesocialtopics
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 抗生素使用后腸道微生態(tài)恢復(fù)方法
- 小學(xué)一年級(jí)數(shù)學(xué)同步練習(xí)題
- 高一化學(xué)第四單元非金屬及其化合物第二講富集在海水中的元素-氯練習(xí)題
- 2024高中地理第一章人口的變化第1節(jié)人口的數(shù)量變化練習(xí)含解析新人教版必修2
- 2024高中語(yǔ)文第四單元?jiǎng)?chuàng)造形象詩(shī)文有別過(guò)小孤山大孤山訓(xùn)練含解析新人教版選修中國(guó)古代詩(shī)歌散文欣賞
- 2024高考化學(xué)一輪復(fù)習(xí)第10章有機(jī)化學(xué)基礎(chǔ)第35講生活中常見的有機(jī)化合物精練含解析
- 2024高考化學(xué)一輪復(fù)習(xí)第三章第3課時(shí)金屬材料復(fù)合材料教案魯科版
- 2024高考化學(xué)二輪復(fù)習(xí)專題一傳統(tǒng)文化物質(zhì)的組成與分類學(xué)案
- 2024高考地理一輪復(fù)習(xí)專練20三大類巖石及地殼的物質(zhì)循環(huán)含解析新人教版
- 期末學(xué)校教育教學(xué)年會(huì)閉幕上校長(zhǎng)講話:凝心聚力奔赴2025光明新程
- GB/T 15166.2-2023高壓交流熔斷器第2部分:限流熔斷器
- 老年人能力評(píng)估標(biāo)準(zhǔn)解讀講義課件
- 材料報(bào)價(jià)三家對(duì)比表
- 2024年國(guó)家公務(wù)員考試公共基礎(chǔ)知識(shí)全真模擬試題及答案(共四套)
- 標(biāo)準(zhǔn)輔助航空攝影技術(shù)規(guī)范
- 2023年中國(guó)人保財(cái)險(xiǎn)校園招聘筆試參考題庫(kù)附帶答案詳解
- hdx7底層黑磚刷寫和字庫(kù)救磚教程bysmartyou
- 年會(huì)頒獎(jiǎng)晚會(huì)頒獎(jiǎng)盛典簡(jiǎn)約PPT模板
- 年產(chǎn)10000噸柑橘飲料的工廠設(shè)計(jì)
- 雷電知識(shí)、雷電災(zāi)害防御知識(shí)匯總-上(單選題庫(kù))
- 導(dǎo)學(xué)案 高中英語(yǔ)人教版必修三Unit4 Astronomy the science of the stars
評(píng)論
0/150
提交評(píng)論