北京版初中數(shù)學(xué)知識點總結(jié)_第1頁
北京版初中數(shù)學(xué)知識點總結(jié)_第2頁
北京版初中數(shù)學(xué)知識點總結(jié)_第3頁
北京版初中數(shù)學(xué)知識點總結(jié)_第4頁
北京版初中數(shù)學(xué)知識點總結(jié)_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

Word第第頁北京版初中數(shù)學(xué)知識點總結(jié)北京版學(xué)校數(shù)學(xué)學(xué)問點總結(jié)1

平面直角坐標(biāo)系

平面直角坐標(biāo)系:在平面內(nèi)畫兩條相互垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。

水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。

平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③相互垂直④原點重合

三個規(guī)定:

①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

②單位長度的規(guī)定;一般狀況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必需相同。

③象限的規(guī)定:右上為第一象限、左上為其次象限、左下為第三象限、右下為第四象限。

信任上面對平面直角坐標(biāo)系學(xué)問的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的把握了吧,盼望同學(xué)們都能考試勝利。

學(xué)校數(shù)學(xué)學(xué)問點:平面直角坐標(biāo)系的構(gòu)成

對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

平面直角坐標(biāo)系的構(gòu)成

在同一個平面上相互垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。

北京版學(xué)校數(shù)學(xué)學(xué)問點總結(jié)2

1、三角形:由不在同始終線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2、三角形的分類

3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

4、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

5、中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

6、角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

7、高線、中線、角平分線的意義和做法

8、三角形的穩(wěn)定性:三角形的樣子是固定的,三角形的這獨特質(zhì)叫三角形的穩(wěn)定性。

9、三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°

推論1直角三角形的兩個銳角互余

推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角和

推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;三角形的內(nèi)角和是外角和的一半

10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

11、三角形外角的性質(zhì)

(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

(2)三角形的一個外角等于與它不相鄰的兩個內(nèi)角和;

(3)三角形的一個外角大于與它不相鄰的任一內(nèi)角;

(4)三角形的外角和是360°。

北京版學(xué)校數(shù)學(xué)學(xué)問點總結(jié)3

一、平行四邊形的定義、性質(zhì)及判定

1、兩組對邊平行的四邊形是平行四邊形。

2、性質(zhì):

(1)平行四邊形的對邊相等且平行

(2)平行四邊形的對角相等,鄰角互補

(3)平行四邊形的對角線相互平分

3、判定:

(1)兩組對邊分別平行的四邊形是平行四邊形

(2)兩組對邊分別相等的四邊形是平行四邊形

(3)一組對邊平行且相等的四邊形是平行四邊形

(4)兩組對角分別相等的四邊形是平行四邊形

(5)對角線相互平分的四邊形是平行四邊形

4、對稱性:平行四邊形是中心對稱圖形

二、矩形的定義、性質(zhì)及判定

1、定義:有一個角是直角的平行四邊形叫做矩形

2、性質(zhì):矩形的四個角都是直角,矩形的對角線相等

3、判定:

(1)有一個角是直角的平行四邊形叫做矩形

(2)有三個角是直角的四邊形是矩形

(3)兩條對角線相等的平行四邊形是矩形

4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。

三、菱形的定義、性質(zhì)及判定

1、定義:有一組鄰邊相等的平行四邊形叫做菱形

(1)菱形的四條邊都相等

(2)菱形的對角線相互垂直,并且每一條對角線平分一組對角

(3)菱形被兩條對角線分成四個全等的直角三角形

(4)菱形的面積等于兩條對角線長的積的一半

2、s菱=爭6(n、6分別為對角線長)

3、判定:

(1)有一組鄰邊相等的平行四邊形叫做菱形

(2)四條邊都相等的四邊形是菱形

(3)對角線相互垂直的平行四邊形是菱形

4、對稱性:菱形是軸對稱圖形也是中心對稱圖形

北京版學(xué)校數(shù)學(xué)學(xué)問點總結(jié)4

1、不在同始終線上的三點確定一個圓。

2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

推論2圓的兩條平行弦所夾的弧相等

3、圓是以圓心為對稱中心的中心對稱圖形

4、圓是定點的距離等于定長的點的集合

5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

6、圓的外部可以看作是圓心的距離大于半徑的點的集合

7、同圓或等圓的半徑相等

8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

10、推論在同圓或等圓中,假如兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

11、定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角

12、①直線L和⊙O相交d

②直線L和⊙O相切d=r

③直線L和⊙O相離d>r

13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑

15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

16、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

17、切線長定理:從圓外一點引圓的.兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

18、圓的外切四邊形的兩組對邊的和相等,外角等于內(nèi)對角

19、假如兩個圓相切,那么切點肯定在連心線上

20、①兩圓外離d>R+r

②兩圓外切d=R+r

③兩圓相交R-rr)

④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)

北京版學(xué)校數(shù)學(xué)學(xué)問點總結(jié)5

1.有理數(shù):

〔1〕凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。留意:0即不是正數(shù),也不是負(fù)數(shù);—a不肯定是負(fù)數(shù),+a也不肯定是正數(shù);p不是有理數(shù);

〔2〕有理數(shù)的分類:①②

2.數(shù)軸:

數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線。

3.相反數(shù):

〔1〕只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

〔2〕相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。

4.肯定值:

〔1〕正數(shù)的肯定值是其本身,0的肯定值是0,負(fù)數(shù)的肯定值是它的相反數(shù);留意:肯定值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

〔2〕肯定值可表示為:或;肯定值的問題常常分類商量;

5.有理數(shù)比大?。?/p>

〔1〕正數(shù)的肯定值越大,這個數(shù)越大;

〔2〕正數(shù)永久比0大,負(fù)數(shù)永久比0小;

〔3〕正數(shù)大于一切負(fù)數(shù);

〔4〕兩個負(fù)數(shù)比大小,肯定值大的反而小

〔5〕數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;

〔6〕大數(shù)—小數(shù)>0,小數(shù)—大數(shù)<0。

6.互為倒數(shù):

乘積為1的兩個數(shù)互為倒數(shù);留意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1?a、b互為倒數(shù);若ab=—1?a、b互為負(fù)倒數(shù)。

7.有理數(shù)加法法則:

〔1〕同號兩數(shù)相加,取相同的符號,并把肯定值相加;

〔2〕異號兩數(shù)相加,取肯定值較大的符號,并用較大的肯定值減去較小的肯定值;

〔3〕一個數(shù)與0相加,仍得這個數(shù)。

北京版學(xué)校數(shù)學(xué)學(xué)問點總結(jié)6

一、圓

1、圓的有關(guān)性質(zhì)

在一個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。

由圓的意義可知:

圓上各點到定點〔圓心O〕的距離等于定長的點都在圓上。

就是說:圓是到定點的距離等于定長的點的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點的集合。

圓的外部可以看作是到圓心的距離大于半徑的點的集合。連結(jié)圓上任意兩點的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。

圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)??;小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。

圓心相同,半徑不相等的兩個圓叫同心圓。

能夠重合的兩個圓叫等圓。

同圓或等圓的半徑相等。

在同圓或等圓中,能夠相互重合的弧叫等弧。

二、過三點的圓

l、過三點的圓

過三點的圓的作法:利用中垂線找圓心

定理不在同始終線上的三個點確定一個圓。

經(jīng)過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內(nèi)接三角形。

2、反證法

反證法的三個步驟:

①假設(shè)命題的結(jié)論不成立;

②從這個假設(shè)動身,經(jīng)過推理論證,得出沖突;

③由沖突得出假設(shè)不正確,從而確定命題的結(jié)論正確。

例如:求證三角形中最多只有一個角是鈍角。

證明:設(shè)有兩個以上是鈍角

則兩個鈍角之和>180°

與三角形內(nèi)角和等于180°沖突。

∴不行能有二個以上是鈍角。

即最多只能有一個是鈍角。

三、垂直于弦的直徑

圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。

垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

推理1:平分弦〔不是直徑〕的直徑垂直于弦,并且平分弦所對兩條弧。

弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。

平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個條弧。

推理2:圓兩條平行弦所夾的弧相等。

四、圓心角、弧、弦、弦心距之間的關(guān)系

圓是以圓心為對稱中心的中心對稱圖形。

事實上,圓繞圓心旋轉(zhuǎn)任意一個角度,都能夠與原來的圖形重合。

頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。

推理:在同圓或等圓中,假如兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。

五、圓周角

頂點在圓上,并且兩邊都和圓相交的角叫圓周角。

推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

推理2:半圓〔或直徑〕所對的圓周角是直角;90°的圓周角所對的弦是直徑。

推理3:假如三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。

由于以上的定理、推理,所添加幫助線往往是添加能構(gòu)成直徑上的圓周角的幫助線。

北京版學(xué)校數(shù)學(xué)學(xué)問點總結(jié)7

一、角的定義

“靜態(tài)”概念:有公共端點的兩條射線組成的圖形叫做角。

“動態(tài)”概念:角可以看作是一條射線繞其端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。

假如一個角的兩

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論