




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
初二上冊(cè)期中復(fù)習(xí)
板塊一:幕的運(yùn)算
考點(diǎn)一:化為同底或同樣的指數(shù)
1:計(jì)算:(-0.125)21X222X422
2:已知X'"=],£'=3,求戶"+3"的值
3:已知x2n=4,求(3x3n)2—4(x2)2n的值。
4:已知優(yōu)=5,優(yōu)+>=25,求優(yōu)+、的值,若x'"+2"=16,x"=2,求/+"的值.
5:已知10"=3,10〃=5,10,=7,試把105寫成底數(shù)是10的己的形式.
6:若。=2'5/M344,。=433,則。、鼠c的大小關(guān)系是?
考點(diǎn)二:化簡(jiǎn)中的符號(hào)問題
[(-a-b)3]2[-(a+b)2]7
綜合創(chuàng)新:
位數(shù)問題
1:222X5”是幾位數(shù)
2:誠(chéng)雌QDC2*+DQ.*《2N末????
整除與倍數(shù)問題
1:說(shuō)明817-299-9*能被15整除.
2:不論n取何值,代數(shù)式R'+a-M)、-a-觸必為某個(gè)完全平方數(shù)的3倍。
板塊二:整式乘除法
考點(diǎn)一:整式乘除與不等式、方程的結(jié)合
1:解不等式2x(5x-3)+8X—225(2x2-2).
2:當(dāng)x=3時(shí),多項(xiàng)式ax5+bx'+cx-3的值為5,求x=-3時(shí),多項(xiàng)式的值.
考點(diǎn)二:缺項(xiàng)問題
若的展開式中不含/和/項(xiàng),求足、〈的值。
考點(diǎn)三:恒等問題
1:已知m=2x2+3xy—2x—1,n=—x2+xy—1,且3m+6n的值與x無(wú)關(guān),求y的值.
2;已知代數(shù)式(2x+3)(6x+2)—6x(2x+13)+8(7x+2)的值與x的取值無(wú)關(guān).
考點(diǎn)四:化簡(jiǎn)求值
31
(-2a4x2+4a3x3—ia2x4)-r(—a2x2),其中a=二,x=-4.
綜合創(chuàng)新:拆項(xiàng)求代數(shù)式的值
若m2+m—1=0,則m3+2m2+3=
板塊三:平方差、完全平方公式
考點(diǎn)一:公式運(yùn)用
1:(-2x+y)2=,(-2x-y)2=.
2:(5x-)2=—1Oxy+y2(____+____)2=4a2+12ab+9b2
3:(—l+4m)(—1—4m)(x—3)(x+3)(x、9)
考點(diǎn)二:化簡(jiǎn)求值
1:(x+5)2-(x-5)2-5(2X+1)(2X--1)+X?(2x)2,其中x=T:
■■
?
2:化簡(jiǎn)與求值:(a+b)(a—b)+(a+b)2—a(2a+b),其中b=—1
考點(diǎn)三:公式法轉(zhuǎn)化
1:已知a+b=5,ab=6,求a2+b2,a'+b”的值.
2:已知a+b=3,ab=2,求aW;
3:若已知a-』=3,且0>,,求『十二的值.
aaa一
總結(jié):x2+y2=(x+y)2-=(x-y)2+.
考點(diǎn)四:湊成整式平方、平方差公式
1:在多項(xiàng)式25a2+9上加上一個(gè)單項(xiàng)式,使其成為?個(gè)整式的平方,該單項(xiàng)式是.
2:若a與b都是有理數(shù),且滿足a?+b2+5=4a-2b,則(a+b)2006=.
3:求證比四個(gè)連續(xù)自然數(shù)的積大1的數(shù)必是一個(gè)完全平方數(shù)。
4:已知2x2—3x+2=0,求下列各式的值,
①X?---;②/H——.
XX
5:(2+1)(22+1)(24+1)-(22n+l)
擴(kuò)展:立方和、立方差
1:d+12:8.一一),33;(〃+6)3_(〃一人)3
綜合創(chuàng)新:觀察下列算式:
(X—1)(x+1)=x2—1,
(X—1)(x2+x+l)=X3—1.
(x~I)(x3+x+1)=X4-1.???
你發(fā)現(xiàn)什么規(guī)律?請(qǐng)根據(jù)這一規(guī)律計(jì)算1+2+2423+…+2/2”的值.
中考透析:公式的幾何意義
例1(2002陜西)如圖1,在長(zhǎng)為a的正方形中挖掉一個(gè)邊長(zhǎng)為b的小正方形(a>b)把余下的部分剪
拼成一個(gè)矩形(如圖2),通過(guò)計(jì)算兩個(gè)圖形(陰影部分)的面積,驗(yàn)證了一個(gè)等式,則這個(gè)等式是()
圖1圖2
例2(2002年山東省濟(jì)南市中考題)請(qǐng)你觀察圖3,依據(jù)圖形面積間的關(guān)系,不需要添加輔助線,便可
得到一個(gè)你非常熟悉的公式,這個(gè)公式是.
例3(2003山西太原)如圖5是用四張全等的矩形紙片拼成的圖形,請(qǐng)利用圖中空白部分的面積的不
同表示方法寫出一個(gè)關(guān)于a、b的恒等式
例4(2010年四川達(dá)州)觀察圖1和圖2,你能得到一個(gè)什么樣的恒等式
考點(diǎn)一:因式分解意義
例1、下列各式的變形中,是否是因式分解,為什么?
(1)x2y+6xy+9y=xy\^x+6+—(2)(x-2)(x+l)=x?-x-2;
(3)x2-y2+1=(x+)!Xx-y)+1⑷(x-y)+(y-x'2=(x-y)(l-/);
(5)6x2y3=3xy-2xy2;
考點(diǎn)二:如何進(jìn)行因式分解
Is提公因式分解
-6ab+18abx+24aby-6ab2+18a2b2-12aVc
2:公式法分解
9x2(a-b)+4y2(b-a)x4-18x2y2+81y4
3:十字相乘
x2-6x+5x2+4xy-12y2
4:換元
(<?—■+8。+15)-20.
5:分組分解
am-an-bn-bm9x2a-9x2b+4y2b-4y2a
考點(diǎn)三:因式分解求值
1:若——mx+n=(x—4)(x+3)則m,n的值為()
(A)m=—1,n=-12(B)m=—1,n=12(C)m=l,n=—12(D)m=l,n=12.
2:已知(x+a)(x+b)=xJ-13x+36,貝lja+b的值分另ll是()
A.13B.-13C.36D.-36
考點(diǎn)四:因式分解應(yīng)用
1:4ABC的三邊是a,b,c,并且一c?+a2+2ab—2bc=0,請(qǐng)你說(shuō)明^ABC是等腰三角形。
2:已知a、b、c是aABC的三邊,且滿足關(guān)系式a2+/=2ab+2bc-2bI試說(shuō)明aABC是等邊三角形.
3:變式:已知a、b、c是aABC的三邊,且滿足關(guān)系式b2=ab+bc+ac,試說(shuō)明AABC是等邊三角形
誠(chéng)美教育教學(xué)設(shè)計(jì)學(xué)案
板塊五、分式與分式方程
要點(diǎn)(一)、分式定義及有關(guān)題型
題型一:考查分式的定義
1
f~~22
【例1】下列代數(shù)式中:土二x-y,半二2,三二匕,正上,是分式的有:
"2yja+bx+yx-y
題型二:考查分式有意義的條件
【例2】當(dāng)x有何值時(shí),下列分式有意義
(1)—(2)々一(3)一一(4)生士(5)—
2丫
x+4/+2x-l1x1-3X—1
X
題型三:考查分式的值為0的條件
【例3】當(dāng)X取何值時(shí),下列分式的值為0.
(1)—(2)(3).:二2一3
x+3x2-4x2-5x-6
題型四:考查分式的值為正、負(fù)的條件
【例4】(1)當(dāng)x為何值時(shí),分式^為正;
8—x
(2)當(dāng)x為何值時(shí),分式—5-x,為負(fù);
3+(X-1)2
(3)當(dāng)x為何值時(shí),分式三為非負(fù)數(shù).
x+3
練習(xí):
1.當(dāng)X取何值時(shí),下列分式有意義:
13-r1
(1)--—(2)';(3)
2
61x1-3(x+1)+11+2
2.當(dāng)戈為何值時(shí),下列分式的值為零:
(1)“HI(2)戶7
x+4x-6x+5
3.解下列不等式
(1)區(qū)工0(2),*+5>0
戈+1X2+2x+3
誠(chéng)信是一種優(yōu)秀的品質(zhì)學(xué)習(xí)熱線:0731—838807981
“誠(chéng)美教育教學(xué)設(shè)計(jì)學(xué)案
要點(diǎn)(二)分式的基本性質(zhì)及有關(guān)題型
2.分式的變號(hào)法則:-=-
一b+b-bb
題型一:化分?jǐn)?shù)系數(shù)、小數(shù)系數(shù)為整數(shù)系數(shù)
【例1]不改變分式的值,把分子、分母的系數(shù)化為整數(shù).
0.2a-0.03fe
0.04a+b
題型二:分?jǐn)?shù)的系數(shù)變號(hào)
【例2】不改變分式的值,把下列分式的分子、分母的首項(xiàng)的符號(hào)變?yōu)檎?hào).
-X-y
題型三:化簡(jiǎn)求值題
【例3】已知:-+-=5,求2x-3/+2.y的值.
xyx+2xy+y
提示:整體代入,①x+y=3xy,②轉(zhuǎn)化出L+L.
【例4】已知:x--=2,求/的值.
【例5】若lx-),+ll+(2x-3)2=0,求一1—的值.
4x-2y
練習(xí):
1.不改變分式的值,把下列分式的分子、分母的系數(shù)化為整數(shù).
])0.03/-0.2y
0.08x+0.5y
410
2
|x
2.已知:x+—=3,求J,—的值.
xx4+x2+l
3.已知:---=3,求+的值.
abb-ab-a
4.^a2+2a+b2-6Z?+10=0,求^^的值.
5.如果l<x<2,試化簡(jiǎn)+工
2—xIx—11
誠(chéng)信是一種優(yōu)秀的品質(zhì)學(xué)習(xí)熱線:0731—838807982
以誠(chéng)美教育教學(xué)設(shè)計(jì)學(xué)案
要點(diǎn)(三)分式的運(yùn)算
1.確定最簡(jiǎn)公分母的方法:
①最簡(jiǎn)公分母的系數(shù),取各分母系數(shù)的最小公倍數(shù);
②最筒公分母的字母因式取各分母所有字母的最高次幕.
2.確定最大公因式的方法:①最大公因式的系數(shù)取分子、分母系數(shù)的最大公約數(shù);
②取分子、分母相同的字母因式的最低次塞.
題型一:通分
【例1】將卜列各式分別通分.
cbaab
(1)(2)
-2ab'3a2c'-5b2c'a-b'26-2。
x2]
(3)(4)。+2,
x2-x\-2x+x2x2-x-22-a
題型二:約分
【例2】約分:
2
n2-m2x~+x—2
(3)
⑴3⑶in-nx~-x-6
題型三:分式的混合運(yùn)算
【例3】計(jì)算:
(9)3.(二)2.(如再口)3.“2夕)+(4)2;
(2)
-c-abax+yy+x
m+2〃n2ma2
(3)-----+-----(4)
n-tnm—nn-ma-\
2x4x3
(5)
1-x1+x1+x21+x4I+x8
111
(6)++
(x-l)(x+l)(x+1)(x4-3)(x+3)(x+5)
X2-41x2-2x
(7)
x2-4x+4x-2
題型四:化簡(jiǎn)求值題
【例4】先化簡(jiǎn)后求值
⑴已知=求分子「號(hào)[的盧1)嗎小的值;
xy+2”-3xz
(2)已知:—=—=—?求的值;
922
234%-+y+z
誠(chéng)信是一種優(yōu)秀的品質(zhì)學(xué)習(xí)熱線:0731—838807983
誠(chéng)美教育教學(xué)設(shè)計(jì)學(xué)案
(3)已知:a2-3a+l=0,試求(a2-,^(。一工)的值.
a2a
題型五:求待定字母的值
【例5】若*=*+£,試求M'N的值?
練習(xí):
1.計(jì)算
22
/1、2a+5ci—12Q—3ab-lab
(1)--------------+-------
2(。+1)2(。+1)2(a+1)a-bb-a
a-b+ca-2b+3cb-2c2b2
(3)--------------------1(4)a-h+
a+h-cb-c+a----c-a-ba+b
4ab112
(5){a-b+-------)(〃+b-----+----+----7
a-ba+b1-Xl+xl+x2
121
(7)-------------------------1------------
(x—2)(x—3)(x—l)(x—3)(x—l)(x—2)
2.先化簡(jiǎn)后求值
2
(l)i廣4-4,其中。滿足/-。=0.
a+2a2-2i7+la2-1
22
(2)已知x:y=2:3,求(X)+[=+),).(七上)3]+與的值.
xyXyz
50一4AB
3.已知:試求A、B的值.
(x-l)(2x-1)x-\2x-1
4.當(dāng)。為何整數(shù)時(shí),代數(shù)式皆鬻的值是整數(shù),并求出這個(gè)整數(shù)值.
誠(chéng)信是一種優(yōu)秀的品質(zhì)學(xué)習(xí)熱線:0731—838807984
誠(chéng)美教育教學(xué)設(shè)計(jì)學(xué)案
栗點(diǎn)C皿人整敦指數(shù)索身科學(xué)圮數(shù)法
題型一:運(yùn)用整數(shù)指數(shù)幕計(jì)算
【例1】計(jì)算:⑴(。例-3.(兒-1)3(2)(3凸2尸)-2.(5孫-2/)2
_OS
(3)[("+"29-")4『(4)[(X+),)3.(x_y)-2]2?+y]
[a-b)~2(a+by
題型二:化簡(jiǎn)求值題
【例2】已知x+-=5,求(1)”+廠2的值;(2)求r+x*4的值.
題型三:科學(xué)記數(shù)法的計(jì)算
【例3】計(jì)算:(1)(3xlO-3)x(8.2xlO-2)2;(2)(4xl0-3)24-(2x10-2)3.
練習(xí):
1.計(jì)算:(1)(1-1)-(1)-24-l-1l+(l-V3)0+(-0.25)2007.42008
(2)(3-1機(jī)3“_2廠2.(2〃廠3
QaL)2
'(3/廬).(加廠2
(4)[4(x-y)2(x+y)-2]2
[2(x+y)T(x-),)「2
2.已知X2-5X+1=0,求(1)x+x~',(2)x?+x-2的值.
誠(chéng)信是一種優(yōu)秀的品質(zhì)學(xué)習(xí)熱線:0731—838807985
誠(chéng)美教育教學(xué)設(shè)計(jì)學(xué)案
分式方程
【知識(shí)要點(diǎn)】1.分式方程的概念以及解法;
2.分式方程產(chǎn)生增根的原因
3.分式方程的應(yīng)用題
【主要方法】1.分式方程主要是看分母是否有外未知數(shù);
2.解分式方程的關(guān)健是化分式方程為整式方程;方程兩邊同乘以最簡(jiǎn)公分母.
3.解分式方程的應(yīng)用題關(guān)健是準(zhǔn)確地找出等量關(guān)系,恰當(dāng)?shù)卦O(shè)末知數(shù).
(-)分式方程題型分析
題型一:用常規(guī)方法解分式方程
[例1]解下列分式方程
(1)—=-;(2)-^--1=0;(3)---=1;(4)=
x-1xx-3xx-1x2-[x+34-x
提示易出錯(cuò)的幾個(gè)問題:①分子不添括號(hào);②漏乘整數(shù)項(xiàng);③約去相同因式至使漏根;④忘記驗(yàn)根.
題型二:特殊方法解分式方程
[例2]解下列方程
/八x4x+4./c、x+7x+9x+10x+6
(1)---+-----=4;(2)----+----=-----+----
x+1xx+6x+8x+9x+5
提示:(1)換元法,設(shè)」-=),;(2)裂項(xiàng)法,—=1+-i-
x+1x+6x+6
【例3】解下列方程組
111
—I—=一⑴
xy2
111
—I—=—⑵
yz3
111
—?—=—(3)
zx4
題型三:求待定字母的值
【例4】若關(guān)于'的分式方程5r「號(hào)有增根’求,,,的值.
誠(chéng)信是一種優(yōu)秀的品質(zhì)學(xué)習(xí)熱線:0731—838807986
誠(chéng)美教育教學(xué)設(shè)計(jì)學(xué)案
【例5】若分式方程生f=-l的解是正數(shù),求。的取值范圍.
x—2
2—〃
提?。簒=---->0且x#2,,“<2且4.
3
題型四:解含有字母系數(shù)的方程
【例6】解關(guān)于x的方程
x-ac,,小
---=—(c+J*0)
b—xa
提?。?1)a,匕,c,d是已知數(shù);(2)c+d#0.
題型五:列分式方程解應(yīng)用題
練習(xí):
1.解下列方程:
(1)匯+-^-=0;(2)-^-2=—^-;
x+11-2xx-3x-3
73,7-x2
(3)—....-=2;-5---------2=X+~2-
x+2x-2X+Xx-Xx-1
5x-4_2x+51(6)-L+?+-L
2x-4~3x-2~2x+1x+5x+2x+4
xx-9x+1x-8
(7)----------F--------=--------H----------
x—2,x—7x—1x-6
2.解關(guān)于x的方程:
(1)—=—+—2a);(2)—+—=—+—.
axbaxbx
3.如果解關(guān)于x的方程<+2=—匚會(huì)產(chǎn)生增根,求攵的值.
4.當(dāng)A為何值時(shí),關(guān)于x的方程衛(wèi)=——-——+1的解為非負(fù)數(shù).
x+2(x-l)(x+2)
5.已知關(guān)于X的分式方程生巨■="無(wú)解,試求。的值.
X+1
誠(chéng)信是一種優(yōu)秀的品質(zhì)學(xué)習(xí)熱線:0731—838807987
誠(chéng)美教育教學(xué)設(shè)計(jì)學(xué)案
(二)分式方程的特殊解法
解分式方程,主要是把分式方程轉(zhuǎn)化為整式方程,通常的方法是去分母,并且要檢驗(yàn),但對(duì)一
些特殊的分式方程,可根據(jù)其特征,采取靈活的方法求解,現(xiàn)舉例如下:
一、交叉相乘法
例1.解方程:-=—
XX+2
二、化歸法
例2.解方程:-——]-=0
x-1x2-1
三、左邊通分法
例3:解方程:3一_L=8
x-77-x
四、分子對(duì)等法
例4.解方程:—+—=—+—(aHb)
axbx
五、觀察比較法
4x5x-217
例5.解方程:
5x-24x~~4
六、分離常數(shù)法
x+1x+8x+2x+7
例6.解方程:-----1-----=------1-----
x+2x+9無(wú)+3x+8
七、分組通分法
例7.解方程:—+—=—+—
x+2x+5x+3%+4
(三)分式方程求待定字母值的方法
例1.若分式方程3=/一無(wú)解,求,〃的值。
x-22-x
例2.若關(guān)于x的方程上+二=上不會(huì)產(chǎn)生增根,求k的值。
X-1X2-1X+\
例3.若關(guān)于x分式方程一匚+―L=一一有增根,求&的值。
x-2x+2x2-4
例4.若關(guān)于x的方程+與二=々二'有增根x=l,求"的值。
X-xX+xX-1
誠(chéng)信是一種優(yōu)秀的品質(zhì)學(xué)習(xí)熱線:0731—838807988
誠(chéng)美教育教學(xué)設(shè)計(jì)學(xué)案
二次根式
?知識(shí)講解
1.二次根式
2.最簡(jiǎn)二次根式
3.同類二次根式
兒個(gè)二次根式化成最簡(jiǎn)二次根式后,如果被開方數(shù)相同,這幾個(gè)二次根式就叫同類二次根式.
4.二次根式的性質(zhì)
a(a>0)
①(五)”=a(a》0);②|a|=<0(a=0):
-a(a<0)
③〃,y/b(a20,b20);④嚀(b>0,a>0).
5.分母有理化及有理化因式
6.二次根式的運(yùn)算
?例題講解
1、二次根式的意義和性質(zhì)
1、若y=Jx-5+J5-x+2009,則x+y=
2、若式子=有意義,則x的取值范圍是______.
Vx-3-2
3、實(shí)數(shù)a,b,c,如圖所示,化簡(jiǎn)—|a—b|+J(/?+c)2二—
4、將根號(hào)外的a移到根號(hào)內(nèi),得()B
A,石;
5、已知0<x<l,
(廠1廠+
6、—]=—7=H-----1-/—I)(>/2008+1)=____________
V2+V1V3+V2V2008+V2007
2、同類與最簡(jiǎn)二次根式
(1)在下列各組根式中,是同類二次根式的是()
誠(chéng)信是一種優(yōu)秀的品質(zhì)學(xué)習(xí)熱線:0731—838807989
誠(chéng)美教育教學(xué)設(shè)計(jì)學(xué)案
A.6和JiiB.百和
C.飛a%和Jab?D.y/a+l^y/a-l
(2)已知最簡(jiǎn)二次根式人癡和d2b-a+2是同類二次根式,則2=,b=—
(2)在根式1)Va2+;2)^|;3)7x2-xyA)y/27ahc,最簡(jiǎn)二次根式是()
A.1)2)B.3)4)C.1)3)D.1)4)
(3)已知a>b>0,a+b=6J拓,則—,的值為()
y/a+y/b
A.—B.2C.5/2D.-
22
3、二次根式的化簡(jiǎn)與求值
(1)(2006,遼寧--市)先化簡(jiǎn),再求值:
11b_.V5+1,V5-1
----+-+--------,其中2=2!-----,b=------.
a+bba(a+b)22
-/=-~~7==叵-瓜廠廠V2,-j=r^~7=
(2)觀察下列分母有理化的計(jì)算:1=A/3-=A/4-V3>
V2+V1V3+A/2V4+V3
從計(jì)算結(jié)果中找出規(guī)律,并利用這一規(guī)律計(jì)算:
(廠1「+廠1廠++;——1.——-(V2006+1)
V2+V1V3+V2V2006+V2005
(09福建).對(duì)于題目“化簡(jiǎn)求值:,+與+。2_2,其中a=L",甲、乙兩個(gè)學(xué)生的解答不同.
a\a25
49
甲的解答是:
T
乙的解答是:
誰(shuí)的解答是錯(cuò)誤的?為什么?因此乙的解答是錯(cuò)誤的.
4、二次根式的應(yīng)用
1、在實(shí)數(shù)范圍內(nèi)分解因式。
誠(chéng)信是一種優(yōu)秀的品質(zhì)學(xué)習(xí)熱線:0731—8388079810
誠(chéng)美教育教學(xué)設(shè)計(jì)學(xué)案
(1)記-3;(2)9y'T
2、比較數(shù)值的大小(放進(jìn)根式里、平方)
(1)4網(wǎng)5舊;(2)后+標(biāo)與卡+2收
(3)(2009賀州)石的整數(shù)部分是,小數(shù)部分是。?
解題思路:因?yàn)槎菬o(wú)理數(shù),即無(wú)限不循環(huán)小數(shù),所以把卡分成整數(shù)部分a和小數(shù)部分b,
其中a是小于而且最靠近返的整數(shù),而04b<1,這樣就可以從04石一&VI中先求出a,再求
出b?
解:84<?<9,即2’<6<歲,
二2<后<3,即。(石-2VI
又?而是無(wú)限不循環(huán)小數(shù)。
二#的整數(shù)部分是2,小數(shù)部分是而?2。
(4)規(guī)律性問題
觀察下列各式及其驗(yàn)證過(guò)程:
備屜,驗(yàn)證加辱像;照^唇
3導(dǎo)屜驗(yàn)證:3島辱得?與代畢=屁
猜想4」汽的變形結(jié)果,并進(jìn)行驗(yàn)證;
(1)按照上述兩個(gè)等式及其驗(yàn)證過(guò)程的基本思路,
V15
(2)針對(duì)上述各式反映的規(guī)律,寫出用n(n22,且n是整數(shù))表示的等式,并給出驗(yàn)證過(guò)程.
強(qiáng)化練習(xí)
1、若Jx-l-Jl-x=Q+y)2,則x—y的值為()
2、若[一2|+Jb-3+(c-4)-=0,則a-1+c=
誠(chéng)信是一種優(yōu)秀的品質(zhì)學(xué)習(xí)熱線:0731—8388079811
誠(chéng)美教育教學(xué)設(shè)計(jì)學(xué)案
3、化簡(jiǎn):+-3)2
4、實(shí)數(shù)a,b在數(shù)軸上的位置,化簡(jiǎn)正一痙_J(a—b)2.
aY---b??A
o1
5、已知a>b>0,a+b=6J拓,則—---'的值為()
y/a+{b
A.叵
B.2C.V2
2D-i
4x+y
6.已知實(shí)數(shù)x,y滿足x2+y“一4x—2y+5=0,則的值為
J3y-24
需TH低血耐
7.計(jì)算:/—+73(V3-V6)+V8?
V2-1
8.計(jì)算:(39+"病-4小^)+限。
(2006,江蘇淮安)已知x=0+I,求(X+1X)C的值.
X2-x—2x+1X
----c+~~c—c+~~c—+-----―37
9、已知1+4242*5S+22+a,則a=
——+_____+,?,+I+I-1
發(fā)展:已知1+返抵+樂石+2病+1。104-a則a-。(答案:
a■忑5r)
誠(chéng)信是一種優(yōu)秀的品質(zhì)學(xué)習(xí)熱線:0731—8388079812
誠(chéng)美教育教學(xué)設(shè)計(jì)學(xué)案
板塊七勾股定理
要點(diǎn)(一)結(jié)合三角形:
1.已知△ABC的三邊a、b、c滿足(a—8)2+(b-c)2=0,則AABC為______三角形
2.在AABC中,若<?="+c)(6-c),則AABC是____三角形,且/90°
3.在△ABC中,AB=13,AC=15,高AD=12,則BC的長(zhǎng)為
練習(xí)
1.已知|x—12|+k+y—25|與/—iOz+25互為相反數(shù),試判斷以x、y、z為三邊的三角形的
形狀。
2.已知:在AABC中,三條邊長(zhǎng)分別為a、b、c,a=n2-1,h=2n,c=n2+1(n>l)
試說(shuō)明:ZC=90°?
3.若AABC的三邊a、bc,滿足條件a?+/+c?+338=10a+24b+26c,試判斷AABC的形
狀。
4.已知V^6+2M-8|+(c-10)2=0,則以a、b、c為邊的三角形是
誠(chéng)信是一種優(yōu)秀的品質(zhì)學(xué)習(xí)熱線:0731—8388079813
誠(chéng)美教育教學(xué)設(shè)計(jì)學(xué)案
要點(diǎn)(二人勾股定理:實(shí)際應(yīng)用:
1.梯子滑動(dòng)問題:
(1)一架長(zhǎng)2.5加的梯子,斜立在一豎起的墻上,梯子底端距離墻底0.7機(jī)(如圖),如果梯子的頂
端沿墻下滑0.4m,那么梯子底端將向左滑動(dòng)米
(2)如圖,一個(gè)長(zhǎng)為10米的梯子,斜靠在墻面上,梯子的頂端距地面的垂直距離為8米,如果梯
子的頂端下滑1米,那么,梯子底端的滑動(dòng)距離1米,(填“大于”,“等于",或“小于”)
(3)如圖,梯子AB斜靠在墻面上,AC1BC,AC=BC,當(dāng)梯子的頂端A沿AC方向下滑x米時(shí),
梯足B沿CB方向滑動(dòng)y米,則x與y的大小關(guān)系是()
A.x-yB.x>yC.x<yD.不能確定
(4)小明想知道學(xué)校旗桿的高度,他發(fā)現(xiàn)旗桿上的繩子吹到地面上還多1m,當(dāng)他把繩子的下端拉
開5米后,發(fā)現(xiàn)繩子下端剛好觸到地面,試問旗桿的高度為米
2.直角邊與斜邊和斜邊上的高的關(guān)系:
直角三角形兩直角邊長(zhǎng)為a,b,斜邊上的高為h,則下列式子總能成立的是()
111111
A.cib=b~B.u~+~=2/1~C.—I—=一D.---+---------
ahha2b2----h2
變:
如圖,在RtZXABC中,ZACB=90°,CDJ_AB于D,設(shè)AB=c,AC=b,BC=a,CD=h。
求證:(1)-z-d----5=-z-
a2h2h2
(2)a+b<c+h
(3)以a+b,h,c+〃為三邊的三角形是直角三角形
誠(chéng)信是一種優(yōu)秀的品質(zhì)學(xué)習(xí)熱線:0731—8388079814
誠(chéng)美教育教學(xué)設(shè)計(jì)學(xué)案
試一試:(I)只需證明力2(_\+二)=1,從左邊推到到右邊
a2b2
(2)(a+爐<(c+/z)2
(3)(a+/z)2+〃2=(c+/j)2,注意面枳關(guān)系“〃=c/i的應(yīng)用
3.爬行距離最短問題:
1.如圖,一個(gè)無(wú)蓋的正方體盒子的棱長(zhǎng)為10cm,得到G處有一只昆蟲甲,在盒子的內(nèi)部有一只昆
蟲乙(盒壁的忽略不計(jì))
(1)假設(shè)昆蟲甲在頂點(diǎn)G處?kù)o止不動(dòng),如圖a,在盒子的內(nèi)部我們先取棱5g的中點(diǎn)E,再連結(jié)
AE、EQ,昆蟲乙如果沿途徑A—EfG爬行,那么可以在最短的時(shí)間內(nèi)捕捉到昆蟲甲,仔細(xì)
體會(huì)其中的道理,并在圖b中畫一條路徑,使昆蟲乙從頂點(diǎn)A沿這條路爬行,同樣可以在最短的時(shí)
間內(nèi)捕捉到昆蟲甲。
(2)如圖b,假設(shè)昆蟲甲從點(diǎn)G以1厘米/秒的速度在盒子的內(nèi)部沿G。向下爬行,同時(shí)昆蟲乙從
頂點(diǎn)A以2厘米/秒的速度在盒壁上爬行,那么昆蟲乙至少需要多少時(shí)間才能捕捉到昆蟲甲?
試一試:對(duì)于(2),當(dāng)昆蟲甲從頂點(diǎn)G沿棱GC向頂點(diǎn)C爬行的同時(shí),昆蟲乙可以沿不同的路徑
爬行,利用勾股定理建立時(shí)間方程,通過(guò)比較得出昆蟲乙捕捉到昆蟲甲的最短時(shí)間
圖a圖b
2.如圖,一塊磚寬AN=5cm,長(zhǎng)ND=10cm,CD上的點(diǎn)F距地面的高FD=8cm,地面上A處的一只螞
蟻到B處吃食,要爬行的最短路線是cm
3.如圖,是一個(gè)三級(jí)臺(tái)階,它的每一級(jí)的長(zhǎng)、寬、高分別為20而I、3dm、2dm,A和B是這個(gè)臺(tái)
階兩相對(duì)的端點(diǎn),A點(diǎn)有一只昆蟲想到B點(diǎn)去吃可口的食物,則昆蟲沿著臺(tái)階爬到B點(diǎn)的最短路程
是分米?
4.如圖,一只螞蟻沿邊長(zhǎng)為a的正方體表面從點(diǎn)A爬到點(diǎn)B,則它走過(guò)的路程最短為()
A.y/3aB.(1+女1C.3aD.亞a
誠(chéng)信是一種優(yōu)秀的品質(zhì)學(xué)習(xí)熱線:0731—8388079815
誠(chéng)美教育教學(xué)設(shè)計(jì)學(xué)案
4.折疊問題:
1.如圖,有一張直角三角形紙片,兩直角邊AC=6,BC=8,將AABC折疊,使點(diǎn)B與點(diǎn)A重合,
折痕為DE,則CD等于()
1.小明和爸爸媽媽卜一登香山,他們沿著45度的坡路走了500米,看到了一棵紅葉樹,這棵紅葉
樹離地面的高度是米。
2.如圖,山坡上兩株樹木之間的坡面距離是4右米,則這兩株樹之間的垂直距離是
米,水平距離是米。
3.如圖,--根12米高的電線桿兩側(cè)各用15米的鐵絲固定,兩個(gè)固定點(diǎn)之間的距離
是□
4.如圖,欲測(cè)量松花江的寬度,沿江岸取B、C兩點(diǎn),在江對(duì)岸取一點(diǎn)A,使AC垂直江岸,測(cè)得
BC=50米,NB=60°,則江面的寬度為?
(三)求邊長(zhǎng):
1.(1)在RfA48c中,a、b、c分別是NA、NB、NC的對(duì)邊,NC=90°
誠(chéng)信是一種優(yōu)秀的品質(zhì)學(xué)習(xí)熱線:0731—8388079816
9/誠(chéng)美教育教學(xué)設(shè)計(jì)學(xué)案
①已知:Q=6,c=10,求b;②已知:a=40,b=9,求c;
2.如圖所示,在四邊形ABCD中,NBAD=90°,NDBC=9()°,AD=3,AB=4,BC=12,求CD。
(五)方向問題:
1.有?次,小明坐著輪船由A點(diǎn)出發(fā)沿正東方向AN航行,在A點(diǎn)望湖中小島M,測(cè)得/MAN=
30°,當(dāng)他到B點(diǎn)時(shí),測(cè)得NMBN=45°,AB=100米,你能算出AM的長(zhǎng)嗎?
AB
2.一輪船在大海中航行,它先向正北方向航行8km,接著,它又掉頭向正東方向航行15千米.
⑴此時(shí)輪船離開出發(fā)點(diǎn)多少km?
⑵若輪船每航行1km,需耗油0.4升,那么在此過(guò)程中輪船共耗油多少升?
(六)利用三角形面積相等:
1.如圖,小正方形邊長(zhǎng)為1,連接小正方形
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 住宅認(rèn)購(gòu)定金合同范本
- 倉(cāng)儲(chǔ)保管填寫合同范本
- 2025年四川貨運(yùn)從業(yè)資格證考試的技巧
- 一房三賣買賣合同范本
- 個(gè)人外匯貸款合同范本
- 助資合同范本
- 個(gè)人買房購(gòu)房合同范本
- 公司稅貸合同范本
- 個(gè)人店面整體裝修合同范本
- 低價(jià)倒混凝土合同范本
- 航拍中國(guó)優(yōu)秀課件
- 《做自己的心理醫(yī)生 現(xiàn)代人的心理困惑和自我療愈策略》讀書筆記思維導(dǎo)圖PPT模板下載
- 小學(xué)音樂組集體備課計(jì)劃
- 電力需求側(cè)自測(cè)題4科
- 稿件修改說(shuō)明(模板)
- 血液透析安全注射臨床實(shí)踐專家共識(shí)解讀
- GB/T 41873-2022塑料聚醚醚酮(PEEK)樹脂
- SB/T 10940-2012商用制冰機(jī)
- GB/T 25945-2010鋁土礦取樣程序
- GB/T 16604-2017滌綸工業(yè)長(zhǎng)絲
- 2023年教師資格證考試歷年小學(xué)綜合素質(zhì)寫作題及范文
評(píng)論
0/150
提交評(píng)論