版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
概率與統(tǒng)計(jì)一、高考預(yù)測(cè)計(jì)數(shù)原理、概率統(tǒng)計(jì)部分是高中數(shù)學(xué)中使用課時(shí)最多的一個(gè)知識(shí)板塊,高考對(duì)該部分的考查分值也較多.從近幾年的情況看,該部分考查的主要問題是排列組合應(yīng)用問題,二項(xiàng)式定理及其簡單應(yīng)用,隨機(jī)抽樣,樣本估計(jì)總體,線性回歸分析,獨(dú)立性檢驗(yàn),古典概型,幾何概型,事件的獨(dú)立性,隨機(jī)變量的分布、期望和方差,正態(tài)分布的簡單應(yīng)用,在試卷中一般是2~3個(gè)選擇題、填空題,一個(gè)解答題,試題難度中等或者稍易.預(yù)計(jì)2022年該部分的基本考查方向還是這樣,雖然可能出現(xiàn)一些適度創(chuàng)新,但考查的基本點(diǎn)不會(huì)發(fā)生大的變化.計(jì)數(shù)原理、概率統(tǒng)計(jì)部分的復(fù)習(xí)要從整體上,從知識(shí)的相互關(guān)系上進(jìn)行.概率試題的核心是概率計(jì)算,其中事件之間的互斥、對(duì)立和獨(dú)立性是概率計(jì)算的核心,排列組合是進(jìn)行概率計(jì)算的工具,在復(fù)習(xí)概率時(shí)要抓住概率計(jì)算的核心和這個(gè)工具;統(tǒng)計(jì)問題的核心是樣本數(shù)據(jù)的分布,反映樣本數(shù)據(jù)的方法:樣本頻數(shù)表、樣本頻率分布表、頻率分布直方圖、頻率折線圖、莖葉圖,得到樣本數(shù)據(jù)的方法是隨機(jī)抽樣,在復(fù)習(xí)統(tǒng)計(jì)部分時(shí),要緊緊抓住這些圖表和方法,把圖表的含義弄清楚,這樣剩下的問題就是有關(guān)的計(jì)算和對(duì)統(tǒng)計(jì)思想的理解,如樣本均值和方差的計(jì)算,用樣本估計(jì)總體等.二、知識(shí)導(dǎo)學(xué)(4)解決概率問題要注意“四個(gè)步驟,一個(gè)結(jié)合”:求概率的步驟是:第一步,確定事件性質(zhì)即所給的問題歸結(jié)為四類事件中的某一種.第二步,判斷事件的運(yùn)算即是至少有一個(gè)發(fā)生,還是同時(shí)發(fā)生,分別運(yùn)用相加或相乘事件.第三步,運(yùn)用公式求解第四步,答,即給提出的問題有一個(gè)明確的答復(fù).要點(diǎn)要點(diǎn)要點(diǎn)三、易錯(cuò)點(diǎn)點(diǎn)睛【知識(shí)點(diǎn)歸類點(diǎn)撥】二項(xiàng)式的展開式相同,但通項(xiàng)公式不同,對(duì)應(yīng)項(xiàng)也不相同,在遇到類似問題時(shí),要注意區(qū)分2、如果的展開式中各項(xiàng)系數(shù)之和為128,則展開式中的系數(shù)是()(A)7(B)(C)21(D)解析:當(dāng)時(shí)即,根據(jù)二項(xiàng)式通項(xiàng)公式得時(shí)對(duì)應(yīng),即故項(xiàng)系數(shù)為.【易錯(cuò)點(diǎn)3】二項(xiàng)式系數(shù)最大項(xiàng)與展開式系數(shù)最大項(xiàng)是兩個(gè)不同的概念,在求法上也有很大的差別,在此往往因?yàn)楦拍畈磺鍖?dǎo)致出錯(cuò)解析:由題意知,第五項(xiàng)系數(shù)為,第三項(xiàng)的系數(shù)為,則有,設(shè)展開式中的第r項(xiàng),第r+1項(xiàng),第r+2項(xiàng)的系數(shù)絕對(duì)值分別為,若第r+1項(xiàng)的系數(shù)絕對(duì)值最大,則,解得:系數(shù)最大值為由知第五項(xiàng)的二項(xiàng)式系數(shù)最大,此時(shí).【易錯(cuò)點(diǎn)4】對(duì)于排列組合問題,不能分清是否與順序有關(guān)而導(dǎo)致方法出錯(cuò)。1.有六本不同的書按下列方式分配,問共有多少種不同的分配方式?分成1本、2本、3本三組;分給甲、乙、丙三人,其中1人1本,1人兩本,1人3本;平均分成三組,每組2本;分給甲、乙、丙三人,每人2本。在問題(3)的基礎(chǔ)上,再分配即可,共有分配方式種?!局R(shí)點(diǎn)歸類點(diǎn)撥】本題是有關(guān)分組與分配的問題,是一類極易出錯(cuò)的題型,對(duì)于此類問題的關(guān)鍵是搞清楚是否與順序有關(guān),分清先選后排,分類還是分步完成等,對(duì)于平均分組問題更要注意順序,避免計(jì)算重復(fù)或遺漏。2.從5位男教師和4位女教師中選出3位教師,派到三個(gè)班擔(dān)任班主任(每班一位班主任),要求這三位班主任中男、女教師都要有,則不同的選派方法共有()210種B、420種C、630種D、840種解析:首先選擇3位教師的方案有:①一男兩女;計(jì);②兩男一女:計(jì)=40。其次派出3位教師的方案是=6。故不同的選派方案共有種。解析:(1)3個(gè)女同學(xué)是特殊元素,我們先把她們排列好,共有種排法;由于3個(gè)同學(xué)必須排在一起,我們可視排好的女同學(xué)為一個(gè)整體,在與男同學(xué)排隊(duì),這時(shí)是五個(gè)元素的全排列,應(yīng)有種排法。由乘法原理,有種不同排法。(2)先將男生排好,共有種排法;再在這4個(gè)男生的中間及兩頭的5個(gè)空中插入3個(gè)女生,有種方案。故符合條件的排法共有種。(3)甲、乙2人先排好,共有種排法;再從余下的5人中選三人排在甲、乙2人中間,有種排法,這時(shí)把已排好的5人看作一個(gè)整體,與剩下的2人再排,又有種排法;這樣,總共有種不同的排法。(4)先排甲、乙、丙3人以外的其他四人,有種排法,由于甲、乙要相鄰,故把甲、乙排好,有種排法;最后把甲、乙排好的這個(gè)整體與丙分別插入原先排好的4人的空當(dāng)中,有種排法;這樣,總共有種不同的排法。(5)從七個(gè)位置中選出4個(gè)位置把男生排好,有種排法;然后再在余下得個(gè)空位置中排女生,由于女生要按高矮排列。故僅有一種排法。這樣總共有種不同的排法。2.有兩排座位,前排11個(gè)座位,后排12個(gè)座位,現(xiàn)安排2人就坐,規(guī)定前排中間三個(gè)座位不能坐,并且這2人不左右相鄰,那么不同排法的種數(shù)()A、234B、346C、350D、363解析:把前后兩排連在一起,去掉前排中間3個(gè)座位,共有種,再加上4種不能算相鄰的,共有種。所以的概率分布為—300—100100300P根據(jù)的概率分布,可得的期望(2)這名同學(xué)總得分不為負(fù)分的概率為?!局R(shí)點(diǎn)歸類點(diǎn)撥】二項(xiàng)分布是一種常見的重要的離散型隨機(jī)變量分布列,其概率就是獨(dú)立重復(fù)實(shí)驗(yàn)n次其中發(fā)生k次的概率。但在解決實(shí)際問題時(shí)一定看清是否滿足二項(xiàng)分布。解析:(1)的所有可能值為0,1,2,3,4。用表示“汽車通過第k個(gè)路口時(shí)不?!薄畡t獨(dú)立。故從而的分布列為01234P(2)?!局R(shí)點(diǎn)歸類點(diǎn)撥】在正態(tài)分布中,為總體的平均數(shù),為總體的標(biāo)準(zhǔn)差,另外,正態(tài)分布在的概率為,在內(nèi)取值的概率為。解題時(shí),應(yīng)當(dāng)注意正態(tài)分布在各個(gè)區(qū)間的取值概率,不可混淆,否則,將出現(xiàn)計(jì)算失誤。四、典型習(xí)題導(dǎo)練1、一籠子中裝有2只白貓,3只黑貓,籠門打開每次出來一只貓,每次每只貓都有可能出來。(Ⅰ)第三次出來的是只白貓的概率;(Ⅱ)記白貓出來完時(shí)籠中所剩黑貓數(shù)為,試求的概率分布列及期望?!窘馕觥浚á瘢á颍┰O(shè)籠中所剩黑貓數(shù)為,則:=0,1,2,3,其概率分布列如下:0123P2、深圳市某校中學(xué)生籃球隊(duì)假期集訓(xùn),集訓(xùn)前共有6個(gè)籃球,其中3個(gè)是新球(即沒有用過的球),3個(gè)是舊球(即至少用過一次的球).每次訓(xùn)練,都從中任意取出2個(gè)球,用完后放回.(Ⅰ)設(shè)第一次訓(xùn)練時(shí)取到的新球個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望;(Ⅱ)求第二次訓(xùn)練時(shí)恰好取到一個(gè)新球的概率.(Ⅱ)設(shè)“從6個(gè)球中任意取出2個(gè)球,恰好取到一個(gè)新球”為事件.則“第二次訓(xùn)練時(shí)恰好取到一個(gè)新球”就是事件.而事件、、互斥,所以,.由條件概率公式,得,…9分,……10分.………11分所以,第二次訓(xùn)練時(shí)恰好取到一個(gè)新球的概率為.…12分3、黃山風(fēng)景區(qū)某旅游超市銷售不同價(jià)格的兩種紀(jì)念品,一種單價(jià)10元,另一種單價(jià)15元,超市計(jì)劃將這兩種紀(jì)念品共4件(兩件10元,兩件15元)在超市入口和出口處展出銷售,假設(shè)光顧該超市的一位游客隨機(jī)的從這兩處選購紀(jì)念品,且選購單價(jià)10元和15元的紀(jì)念品是等可能的.(Ⅰ)若每處各展出一件10元的紀(jì)念品和一件15元的紀(jì)念品,則該游客只選購了一件紀(jì)念品且單價(jià)為15元的概率是多少?(Ⅱ)若每處至少展出一件紀(jì)念品,記該游客只選購了一件紀(jì)念品且單價(jià)為15元的概率為,怎樣分配展出能使的值最大?并求出的最大值;(Ⅲ)若每處隨機(jī)的各展出兩件紀(jì)念品,該游客從這兩處各選購了一件紀(jì)念品,記該游客選購紀(jì)念品的消費(fèi)總金額為元,求隨機(jī)變量的分布列,并求出的數(shù)學(xué)期望.4、盒中有大小相同的編號(hào)為1,2,3,4,5,6的六只小球,規(guī)定:摸一次需1元,從盒中摸出2只球,如果這2只球的編號(hào)均能被3整除,則獲一等獎(jiǎng),獎(jiǎng)金10元,如果這2只球的編號(hào)均為偶數(shù),則獲二等獎(jiǎng),獎(jiǎng)金2元,其他情況均不獲獎(jiǎng)(Ⅰ)若某人摸一次且獲獎(jiǎng),求他獲得一等獎(jiǎng)的概率;(Ⅱ)若有2人參加摸球游戲,按規(guī)定每人摸一次,摸后放回,2人共獲獎(jiǎng)金X元,求X的分布列及期望【解析】(Ⅰ)設(shè)摸一次得一等獎(jiǎng)為事件A,摸一次得二等獎(jiǎng)為事件B,則,某人摸一次且獲獎(jiǎng)為事件,顯然A、B互斥所以故某人摸一次且獲獎(jiǎng),他獲得一等獎(jiǎng)的概率為:【解析】(Ⅰ)設(shè)學(xué)生“跳高得,跳遠(yuǎn)得”記為事件,“跳高得,跳遠(yuǎn)得”記為事件,則(2分)所以該學(xué)生恰好得到一個(gè)和一個(gè)的概率為。(4分)(Ⅱ)由題意,的所有可能取值是10,15,20,20,25,30。而(8分)則的分布列為1015202530的數(shù)學(xué)期望為。(12分)6、某電視臺(tái)有A、B兩種智力闖關(guān)游戲,甲、乙、丙、丁四人參加,其中甲乙兩人各自獨(dú)立進(jìn)行游戲A,丙丁兩人各自獨(dú)立進(jìn)行游戲B.已知甲、乙兩人各自闖關(guān)成功的概率均為,丙、丁兩人各自闖關(guān)成功的概率均為.(Ⅰ)求游戲A被闖關(guān)成功的人數(shù)多于游戲B被闖關(guān)成功的人數(shù)的概率;(Ⅱ)記游戲A、B被闖關(guān)成功的總?cè)藬?shù)為,求的分布列和期望.7、(Ⅰ)求取出的3個(gè)球中至少有一個(gè)紅球的概率;(Ⅱ)求取出的3個(gè)球得分之和恰為1分的概率;(Ⅲ)設(shè)為取出的3個(gè)球中白色球的個(gè)數(shù),求的分布列和數(shù)學(xué)期望.8、如圖3,兩點(diǎn)之間有條網(wǎng)線連接,它們能通過的最大信息量分別為.從中任取三條網(wǎng)線且使每條網(wǎng)線通過最大信息量,設(shè)這三條網(wǎng)線通過的最大信息量之和為(Ⅰ)當(dāng)時(shí),則保證線路信息暢通,求線路信息暢通的概率;(Ⅱ)求的分布列和數(shù)學(xué)期望.(本小題主要考查古典概型、離散型隨機(jī)變量的分布列與數(shù)學(xué)期望等知識(shí),考查或然與必然的數(shù)學(xué)思想方法,以及數(shù)據(jù)處理能力、運(yùn)算求解能力和應(yīng)用意識(shí))【解析】(Ⅰ)從6條網(wǎng)線中隨機(jī)任取三條網(wǎng)線共有種情況…1分∵,∴…2分∵,∴…3分∵,∴.…4分∵,∴.………5分∴.9、乒乓球單打比賽在甲、乙兩名運(yùn)動(dòng)員間進(jìn)行,比賽采用局勝制(即先勝局者獲勝,比賽結(jié)束),假設(shè)兩人在每一局比賽中獲勝的可能性相同.(Ⅰ)求甲以比獲勝的概率;(Ⅱ)求乙獲勝且比賽局?jǐn)?shù)多于局的概率;(Ⅲ)求比賽局?jǐn)?shù)的分布列.【解析】(Ⅰ):由已知,甲、乙兩名運(yùn)動(dòng)員在每一局比賽中獲勝的概率都是…1分記“甲以比獲勝”為事件,則.……4分(Ⅱ):記“乙獲勝且比賽局?jǐn)?shù)多于局”為事件.因?yàn)橐乙员全@勝的概率為,6分乙以比獲勝的概率為,…7分所以…8分(Ⅲ)解:設(shè)比賽的局?jǐn)?shù)為,則的可能取值為.,…9分,……10分,…11分.…12分比賽局?jǐn)?shù)的分布列為:……13分;;;;.……11分隨機(jī)變量的分布列為:01234………12分所以……13分11、2022年2月份,從銀行房貸部門得到好消息,首套住房貸款利率將回歸基準(zhǔn)利率.某大型銀行在一個(gè)星期內(nèi)發(fā)放貸款的情況統(tǒng)計(jì)如圖所示:⑴求在本周內(nèi)該銀行所借貸客戶的平均貸款年限(取過剩近似整數(shù)值);⑵⑶假設(shè)該銀行此星期的貸款業(yè)績一共持續(xù)10個(gè)星期不變,在這段時(shí)間里,每星期都從借貸客戶中選出一人,記表示其中貸款年限不超過20年得人數(shù),求.【命題意圖】本小題主要考查統(tǒng)計(jì)與概率的相關(guān)知識(shí),具體涉及到統(tǒng)計(jì)圖的應(yīng)用、二項(xiàng)分布以及數(shù)學(xué)期望的求法.【解析】⑴平均年限.(4分)⑵所求概率.(8分)⑶由條件知,所以.(12分)12、為增強(qiáng)市民節(jié)能環(huán)保意識(shí),某市面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的500名志愿者中隨機(jī)抽取100名志愿者,他們的年齡情況如下表所示.(Ⅰ)頻率分布表中的①、②位置應(yīng)填什么數(shù)據(jù)?并在答題卡中補(bǔ)全頻率分布直方圖(如圖),再根據(jù)頻率分布直方圖估計(jì)這500名志愿者中年齡在[30,35)歲的人數(shù);(Ⅱ)在抽出的100名志愿者中按年齡再采用分層抽樣法抽取20人參加中心廣場(chǎng)的宣傳活動(dòng),從這20人中選取2名志愿者擔(dān)任主要負(fù)責(zé)人,記這2名志愿者中“年齡低于30歲”的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.分組(單位:歲)頻數(shù)頻率【解析】(Ⅰ)①處填20,②處填;補(bǔ)全頻率分布直方圖如圖所示.根據(jù)頻率分布直方圖估計(jì)這500名志愿者中年齡在[30,35)的人數(shù)為500×=175.……(4分)13、某高校在2022年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績共分五組,得到頻率分布表如下表所示。(1)請(qǐng)求出①②位置相應(yīng)的數(shù)字,填在答題卡相應(yīng)位置上,并補(bǔ)全頻率分布直方圖;(2)為了能選出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣的方法抽取12人進(jìn)入第二輪面試,求第3、4、5組中每組各抽取多少人進(jìn)入第二輪的面試;假定考生“XXX”筆試成績?yōu)?78分,但不幸沒入選這100人中,那這樣的篩選方法對(duì)該生而言公平嗎?為什么? (3)在(2)的前提下,學(xué)校決定在12人中隨機(jī)抽取3人接受“王教授”的面試,設(shè)第4組中被抽取參加“王教授”面試的人數(shù)為,求的分布列和數(shù)學(xué)期望.【解析】(1)由題意知,組頻率總和為,故第組頻率為,即①處的數(shù)字為;……1分總的頻數(shù)為,因此第組的頻數(shù)為,即②處數(shù)字為……2分頻率分布直方圖如下:(2)第組共名學(xué)生,現(xiàn)抽取人,因此第組抽取的人數(shù)為:人,第組抽取的人數(shù)為:人,第組抽取的人數(shù)為:人.……7分公平:因?yàn)閺乃械膮⒓幼灾骺荚嚨目忌须S機(jī)抽取人,每個(gè)人被抽到的概率是相同的.…8分(只寫“公平”二字,不寫理由,不給分)(3)的可能取值為的分布列為:……11分……12分【解析】(Ⅰ)由條形統(tǒng)計(jì)圖可知,空氣質(zhì)量類別為良的天數(shù)為天,所以此次監(jiān)測(cè)結(jié)果中空氣質(zhì)量類別為良的概率為.…4分(Ⅱ)隨機(jī)變量的可能取值為,則,,所以的分布列為:……12分……12分15、戶外運(yùn)動(dòng)已經(jīng)成為一種時(shí)尚運(yùn)動(dòng),某單位為了了解員工喜歡戶外運(yùn)動(dòng)是否與性別有關(guān),對(duì)本單位的50名員工進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:喜歡戶外運(yùn)動(dòng)不喜歡戶外運(yùn)動(dòng)合計(jì)男性5女性10合計(jì)50已知在這50人中隨機(jī)抽取1人抽到喜歡戶外運(yùn)動(dòng)的員工的概率是.(Ⅰ)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;(Ⅱ)是否有﹪的把握認(rèn)為喜歡戶外運(yùn)動(dòng)與性別有關(guān)?并說明你的理由;(Ⅲ)經(jīng)進(jìn)一步調(diào)查發(fā)現(xiàn),在喜歡戶外運(yùn)動(dòng)的10名女性員工中,有4人還喜歡瑜伽.若從喜歡戶外運(yùn)動(dòng)的10位女性員工中任選3人,記表示抽到喜歡瑜伽的人數(shù),求的分布列和數(shù)學(xué)期望.下面的臨界值表僅供參考:()喜歡戶外運(yùn)動(dòng)不喜歡戶外運(yùn)動(dòng)合計(jì)男性20525女性101525合計(jì)302050【解析】(Ⅰ)在全部50人中隨機(jī)抽取1人的概率是,喜歡戶外活動(dòng)的男女員工共30,其中,男員工20人,列聯(lián)表補(bǔ)充如下16、在某醫(yī)學(xué)實(shí)驗(yàn)中,某實(shí)驗(yàn)小組為了分析某種藥物用藥量與血液中某種抗體水平的關(guān)系,選取六只實(shí)驗(yàn)動(dòng)物進(jìn)行血檢,得到如下資料:動(dòng)物編號(hào)123456用藥量x(單位)134568抗體指標(biāo)y(單位)記為抗體指標(biāo)標(biāo)準(zhǔn)差,若抗體指標(biāo)落在內(nèi)則稱該動(dòng)物為有效動(dòng)物,否則稱為無效動(dòng)物.研究方案規(guī)定先從六只動(dòng)物中選取兩只,用剩下的四只動(dòng)物的數(shù)據(jù)求線性回歸方程,再對(duì)被選取的兩只動(dòng)物數(shù)據(jù)進(jìn)行檢驗(yàn).【解析】(Ⅰ).故1、6號(hào)為無效動(dòng)物,2、3、4、5號(hào)為有效動(dòng)物----2分所以隨機(jī)變量的取值為0,1,2記從六只動(dòng)物中選取兩只所有可能結(jié)果共有15種.----5分012P分別列為期望---6分17、一個(gè)盒子裝有六張卡片,上面分別寫著如下六個(gè)定義域?yàn)榈暮瘮?shù):,,,,,.(1)現(xiàn)從盒子中任取兩張卡片,將卡片上的函數(shù)相加得一個(gè)新函數(shù),求所得函數(shù)是奇函數(shù)的概率;(2)現(xiàn)從盒子中進(jìn)行逐一抽取卡片,且每次取出后均不放回,若取到一張記有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進(jìn)行,求抽取次數(shù)的分布列和數(shù)學(xué)期望.18、“肇實(shí),正名芡實(shí),因肇慶所產(chǎn)之芡實(shí)顆粒大、藥力強(qiáng),故名?!蹦晨蒲兴鶠檫M(jìn)一步改良肇實(shí),為此對(duì)肇實(shí)的兩個(gè)品種(分別稱為品種A和品種B)進(jìn)行試驗(yàn).選取兩大片水塘,每大片水塘分成n小片水塘,在總共2n小片水塘中,隨機(jī)選n小片水塘種植品種A,另外n小片水塘種植品種B.(1)假設(shè)n=4,在第一大片水塘中,種植品種A的小片水塘的數(shù)目記為,求的分布列和數(shù)學(xué)期望;(2)試驗(yàn)時(shí)每大片水塘分成8小片,即n=8,試驗(yàn)結(jié)束后得到品種A和品種B在每個(gè)小片水塘上的每畝產(chǎn)量(單位:kg/畝)如下表:號(hào)碼12345678品種A101979210391100110106品種B115107112108111120110113分別求品種A和品種B的每畝產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗(yàn)結(jié)果,你認(rèn)為應(yīng)該種植哪一品種?【解析】(1)可能的取值為0,1,2,3,4.(1分),,,,即的分布列為01234P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度住宅小區(qū)停車位使用權(quán)租賃及管理服務(wù)合同4篇
- 2025年度綜合物流樞紐承包經(jīng)營權(quán)合同匯編4篇
- 二零二五年度智能城市大數(shù)據(jù)服務(wù)提供協(xié)議范本3篇
- 2025年度模具制造行業(yè)人才培訓(xùn)與輸送合同4篇
- 二零二五年度廁所節(jié)水裝置研發(fā)與推廣合同樣本3篇
- 2025年度車隊(duì)駕駛員勞動(dòng)合同電子化管理規(guī)范4篇
- 甲乙雙方關(guān)于房產(chǎn)抵債的2025年度協(xié)議3篇
- 2025版零擔(dān)運(yùn)輸貨物損壞賠償協(xié)議4篇
- 2025版司機(jī)貨物配送安全責(zé)任合同范本3篇
- 2025年新型城鎮(zhèn)化示范項(xiàng)目聯(lián)合體EPC協(xié)議書模板3篇
- 2024-2030年中國護(hù)肝解酒市場(chǎng)營銷策略分析與未來銷售渠道調(diào)研研究報(bào)告
- 人教版高中數(shù)學(xué)必修二《第十章 概率》單元同步練習(xí)及答案
- 智慧校園信息化建設(shè)項(xiàng)目組織人員安排方案
- 浙教版七年級(jí)上冊(cè)數(shù)學(xué)第4章代數(shù)式單元測(cè)試卷(含答案)
- 一病一品成果護(hù)理匯報(bào)
- AQ-T 1009-2021礦山救護(hù)隊(duì)標(biāo)準(zhǔn)化考核規(guī)范
- 鹽酸??颂婺崤R床療效、不良反應(yīng)與藥代動(dòng)力學(xué)的相關(guān)性分析的開題報(bào)告
- 消防設(shè)施安全檢查表
- 組合結(jié)構(gòu)設(shè)計(jì)原理 第2版 課件 第6、7章 鋼-混凝土組合梁、鋼-混凝土組合剪力墻
- 建筑公司資質(zhì)常識(shí)培訓(xùn)課件
- GB/T 26316-2023市場(chǎng)、民意和社會(huì)調(diào)查(包括洞察與數(shù)據(jù)分析)術(shù)語和服務(wù)要求
評(píng)論
0/150
提交評(píng)論