




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆安徽省桐城市第二中學數(shù)學九上期末質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列圖標中,是中心對稱圖形的是()A. B. C. D.2.把拋物線y=ax2+bx+c的圖象向右平移3個單位,再向下平移2個單位,所得圖象的解析式為y=x2-2x+3,則b+c的值為()A.9 B.12 C.-14 D.103.用配方法解方程,經(jīng)過配方,得到()A. B. C. D.4.下列說法中,不正確的個數(shù)是()①直徑是弦;②經(jīng)過圓內(nèi)一定點可以作無數(shù)條直徑;③平分弦的直徑垂直于弦;④過三點可以作一個圓;⑤過圓心且垂直于切線的直線必過切點.()A.1個 B.2個 C.3個 D.4個5.二次函數(shù)(是常數(shù),)的自變量與函數(shù)值的部分對應(yīng)值如下表:…012………且當時,與其對應(yīng)的函數(shù)值.有下列結(jié)論:①;②和3是關(guān)于的方程的兩個根;③.其中,正確結(jié)論的個數(shù)是()A.0 B.1 C.2 D.36.樣本中共有5個個體,其值分別為a,0,1,2,3.若該樣本的平均值為1,則樣本方差為()A.65 B.65 C.2 D.7.如圖,過x軸正半軸上的任意一點P,作y軸的平行線,分別與反比例函數(shù)和的圖象交于A、B兩點.若點C是y軸上任意一點,連接AC、BC,則△ABC的面積為()A.3 B.4 C.5 D.108.如圖,的半徑等于,如果弦所對的圓心角等于,那么圓心到弦的距離等于()A. B. C. D.9.如圖,將圖形用放大鏡放大,這種圖形的變化屬于()A.平移 B.相似 C.旋轉(zhuǎn) D.對稱10.在平面直角坐標系中,點關(guān)于原點對稱的點的坐標是()A. B. C. D.二、填空題(每小題3分,共24分)11.二次函數(shù)的最大值是________.12.等腰△ABC的腰長與底邊長分別是方程x2﹣6x+8=0的兩個根,則這個△ABC的周長是_____.13.在二次函數(shù)y=x2+bx+c中,函數(shù)y與自變量x的部分對應(yīng)值如下表:x-2-101234y72-1-2m27則m的值為_____.14.一個直角三角形的兩直角邊長分別為和,則這個直角三角形的面積是_____cm1.15.已知拋物線y=x2+2kx﹣6與x軸有兩個交點,且這兩個交點分別在直線x=2的兩側(cè),則k的取值范圍是_____.16.長度等于6的弦所對的圓心角是90°,則該圓半徑為_____.17.若點P(3,1)與點Q關(guān)于原點對稱,則點Q的坐標是___________.18.已知△ABC中,∠BAC=90°,用尺規(guī)過點A作一條直線,使其將△ABC分成兩個相似的三角形,其作法不正確的是_______.(填序號)三、解答題(共66分)19.(10分)如圖,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=的圖象相交于A,B兩點,點A的坐標為(﹣1,3),點B的坐標為(3,n).(1)求這兩個函數(shù)的表達式;(2)點P在線段AB上,且S△APO:S△BOP=1:3,求點P的坐標.20.(6分)已知:如圖,在平面直角坐標系中,△ABC是直角三角形,∠ACB=90°,點A,C的坐標分別為A(﹣3,0),C(1,0),tan∠BAC=.(1)寫出點B的坐標;(2)在x軸上找一點D,連接BD,使得△ADB與△ABC相似(不包括全等),并求點D的坐標;(3)在(2)的條件下,如果點P從點A出發(fā),以2cm/秒的速度沿AB向點B運動,同時點Q從點D出發(fā),以1cm/秒的速度沿DA向點A運動.當一個點停止運動時,另一個點也隨之停止運動.設(shè)運動時間為t.問是否存在這樣的t使得△APQ與△ADB相似?如存在,請求出t的值;如不存在,請說明理由.21.(6分)如圖,正方形ABCD的過長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD、BC交于點F、E,連接AE.(1)求證:AQ⊥DP;(2)求證:AO2=OD?OP;(3)當BP=1時,求QO的長度.22.(8分)如圖,內(nèi)接于,是的直徑,是上一點,弦交于點,弦于點,連接,,且.(1)求證:;(2)若,,求的長.23.(8分)如圖,已知三個頂點的坐標分別為,,(1)請在網(wǎng)格中,畫出線段關(guān)于原點對稱的線段;(2)請在網(wǎng)格中,過點畫一條直線,將分成面積相等的兩部分,與線段相交于點,寫出點的坐標;(3)若另有一點,連接,則.24.(8分)平行四邊形中,點為上一點,連接交對角線于點,點為上一點,于,且,點為的中點,連接;若.(1)求的度數(shù);(2)求證:25.(10分)如圖,在正方形中,是對角線上的一個動點,連接,過點作交于點.(1)如圖①,求證:;(2)如圖②,連接為的中點,的延長線交邊于點,當時,求和的長;(3)如圖③,過點作于,當時,求的面積.26.(10分)如圖,在中,,是斜邊上的中線,以為直徑的分別交、于點、,過點作,垂足為.(1)若的半徑為,,求的長;(2)求證:與相切.
參考答案一、選擇題(每小題3分,共30分)1、C【解題分析】根據(jù)中心對稱圖形的概念對各選項分析判斷即可得解.【題目詳解】解:A、不是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,故本選項錯誤;C、是中心對稱圖形,故本選項正確;D、不是中心對稱圖形,故本選項錯誤.故選:C.【題目點撥】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.2、B【解題分析】y=x2-2x+3=(x-1)2+2,將其向上平移2個單位得:y=(x-1)2+2+2=(x-1)2+4,再向左平移3個單位得:y=(x-1+3)2+4=(x-1+3)2+4=(x+2)2+4=x2+4x+8,所以b=4,c=8,所以b+c=12,故選B.3、D【分析】通過配方法的步驟計算即可;【題目詳解】,,,,故答案選D.【題目點撥】本題主要考查了一元二次方程的配方法應(yīng)用,準確計算是解題的關(guān)鍵.4、C【分析】①根據(jù)弦的定義即可判斷;
②根據(jù)圓的定義即可判斷;
③根據(jù)垂徑定理的推論:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧即可判斷;
④確定圓的條件:不在同一直線上的三點確定一個圓即可判斷;
⑤根據(jù)切線的性質(zhì):經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點即可判斷.【題目詳解】解:①直徑是特殊的弦.所以①正確,不符合題意;
②經(jīng)過圓心可以作無數(shù)條直徑.所以②不正確,符合題意;
③平分弦(不是直徑)的直徑垂直于弦.所以③不正確,符合題意;
④過不在同一條直線上的三點可以作一個圓.所以④不正確,符合題意;
⑤過圓心且垂直于切線的直線必過切點.所以⑤正確,不符合題意.
故選:C.【題目點撥】本題考查了切線的性質(zhì)、垂徑定理、確定圓的條件,解決本題的關(guān)鍵是掌握圓的相關(guān)定義和性質(zhì).5、C【分析】首先確定對稱軸,然后根據(jù)二次函數(shù)的圖像和性質(zhì)逐一進行分析即可求解.【題目詳解】∵由表格可知當x=0和x=1時的函數(shù)值相等都為-2∴拋物線的對稱軸是:x=-=;∴a、b異號,且b=-a;∵當x=0時y=c=-2∴c∴abc0,故①正確;∵根據(jù)拋物線的對稱性可得當x=-2和x=3時的函數(shù)值相等都為t∴和3是關(guān)于的方程的兩個根;故②正確;∵b=-a,c=-2∴二次函數(shù)解析式:∵當時,與其對應(yīng)的函數(shù)值.∴,∴a;∵當x=-1和x=2時的函數(shù)值分別為m和n,∴m=n=2a-2,∴m+n=4a-4;故③錯誤故選C.【題目點撥】本題考查了二次函數(shù)的綜合題型,主要利用了二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)的對稱性,二次函數(shù)與一元二次方程等知識點,要會利用數(shù)形結(jié)合的思想,根據(jù)給定自變量與函數(shù)值的值結(jié)合二次函數(shù)的性質(zhì)逐條分析給定的結(jié)論是關(guān)鍵.6、C【分析】由樣本平均值的計算公式列出關(guān)于a的方程,解出a,再利用樣本方差的計算公式求解即可.【題目詳解】由題意知(a+0+1+2+3)÷5=1,解得a=-1,∴樣本方差為故選:C.【題目點撥】本題考查樣本的平均數(shù)、方差求法,屬基礎(chǔ)題,熟記樣本的平均數(shù)、方差公式是解答本題的關(guān)鍵7、C【分析】設(shè)P(a,0),由直線AB∥y軸,則A,B兩點的橫坐標都為a,而A,B分別在反比例函數(shù)圖象上,可得到A點坐標為(a,-),B點坐標為(a,),從而求出AB的長,然后根據(jù)三角形的面積公式計算即可.【題目詳解】設(shè)P(a,0),a>0,∴A和B的橫坐標都為a,OP=a,將x=a代入反比例函數(shù)y=﹣中得:y=﹣,∴A(a,﹣);將x=a代入反比例函數(shù)y=中得:y=,∴B(a,),∴AB=AP+BP=+=,則S△ABC=AB?OP=××a=1.故選C.【題目點撥】此題考查了反比例函數(shù),以及坐標與圖形性質(zhì),其中設(shè)出P的坐標,表示出AB的長是解本題的關(guān)鍵.8、C【分析】過O作OD⊥AB于D,根據(jù)等腰三角形三線合一得∠BOD=60°,由30°角所對的直角邊等于斜邊的一半求解即可.【題目詳解】解:過O作OD⊥AB,垂足為D,∵OA=OB,∴∠BOD=∠AOB=×120°=60°,∴∠B=30°,∴OD=OB=×4=2.即圓心到弦的距離等于2.故選:C.【題目點撥】本題考查圓的基本性質(zhì)及等腰三角形的性質(zhì),含30°角的直角三角形的性質(zhì),根據(jù)題意作出輔助線,解直角三角形是解答此題的關(guān)鍵.9、B【分析】根據(jù)放大鏡成像的特點,結(jié)合各變換的特點即可得出答案.【題目詳解】解:根據(jù)相似圖形的定義知,用放大鏡將圖形放大,屬于圖形的形狀相同,大小不相同,所以屬于相似變換.故選:B.【題目點撥】本題考查相似形的識別,聯(lián)系圖形根據(jù)相似圖形的定義得出是解題的關(guān)鍵.10、B【分析】根據(jù)關(guān)于原點對稱的點的坐標特點:兩個點關(guān)于原點對稱時,它們的坐標符號相反,即點P(x,y)關(guān)于原點O的對稱點是P′(-x,-y),可以直接寫出答案.【題目詳解】點P(-3,4)關(guān)于原點對稱的點的坐標是(3,-4).故選:B.【題目點撥】本題主要考查了關(guān)于原點對稱的點的坐標特點,關(guān)鍵是掌握兩個點關(guān)于原點對稱時坐標變化特點:橫縱坐標均互為相反數(shù).二、填空題(每小題3分,共24分)11、1【分析】題目所給形式是二次函數(shù)的頂點式,易知其頂點坐標是(5,1),也就是當x=5時,函數(shù)有最大值1.【題目詳解】解:∵,∴此函數(shù)的頂點坐標是(5,1).即當x=5時,函數(shù)有最大值1.故答案是:1.【題目點撥】本題考查了二次函數(shù)的最值,解題關(guān)鍵是掌握二次函數(shù)頂點式,并會根據(jù)頂點式求最值.12、11【題目詳解】∵,∴(x-2)(x-4)=1.∴x-2=1或x-4=1,即x1=2,x2=4.∵等腰△ABC的腰長與底邊長分別是方程的兩個根,∴當?shù)走呴L和腰長分別為2和4時,滿足三角形三邊關(guān)系,此時△ABC的周長為:2+4+4=11;當?shù)走呴L和腰長分別為4和2時,由于2+2=4,不滿足三角形三邊關(guān)系,△ABC不存在.∴△ABC的周長=11.故答案是:1113、-1【分析】二次函數(shù)的圖象具有對稱性,從函數(shù)值來看,函數(shù)值相等的點就是拋物線的對稱點,由此可推出拋物線的對稱軸,根據(jù)對稱性求m的值.【題目詳解】解:根據(jù)圖表可以得到,點(-2,7)與(4,7)是對稱點,點(-1,2)與(3,2)是對稱點,∴函數(shù)的對稱軸是:x=1,∴橫坐標是2的點與(0,-1)是對稱點,∴m=-1.【題目點撥】正確觀察表格,能夠得到函數(shù)的對稱軸,聯(lián)想到對稱關(guān)系是解題的關(guān)鍵.14、【分析】本題可利用三角形面積×底×高,直接列式求解.【題目詳解】∵直角三角形兩直角邊可作為三角形面積公式中的底和高,∴該直角三角形面積.故填:.【題目點撥】本題考查三角形面積公式以及二次根式的運算,難度較低,注意計算仔細即可.15、【分析】由拋物線y=x2+2kx﹣6可得拋物線開口方向向上,根據(jù)拋物線與x軸有兩個交點且這兩個交點分別在直線x=2的兩側(cè)可得:當x=2時,拋物線在x軸下方,即y<1.【題目詳解】解:∵y=x2+2kx﹣6與x軸有兩個交點,兩個交點分別在直線x=2的兩側(cè),∴當x=2時,y<1.∴4+4k﹣6<1解得:k<;∴k的取值范圍是k<,故答案為:k<.【題目點撥】本題主要考查二次函數(shù)圖象性質(zhì),解決本題的關(guān)鍵是要熟練掌握二次函數(shù)圖象的性質(zhì).16、1【分析】結(jié)合等腰三角形的性質(zhì),根據(jù)勾股定理求解即可.【題目詳解】解:如圖AB=1,∠AOB=90°,且OA=OB,在中,根據(jù)勾股定理得,即∴,故答案為:1.【題目點撥】本題考查了等腰三角形的性質(zhì)及勾股定理,在等腰直角三角形中靈活利用勾股定理求線段長度是解題的關(guān)鍵.17、(–3,–1)【分析】根據(jù)關(guān)于原點對稱的點的規(guī)律:縱橫坐標均互為相反數(shù)解答即可.【題目詳解】根據(jù)關(guān)于原點對稱的點的坐標的特點,可得:點P(3,1)關(guān)于原點過對稱的點Q的坐標是(–3,–1).故答案為:(–3,–1).【題目點撥】本題主要考查了關(guān)于原點對稱的點的坐標特點,解題時根據(jù)兩個點關(guān)于原點對稱時,它們的同名坐標互為相反數(shù)可直接得到答案,本題屬于基礎(chǔ)題,難度不大,注意平面直角坐標系中任意一點P(x,y),關(guān)于原點的對稱點是(–x,–y),即關(guān)于原點的對稱點,橫縱坐標都變成相反數(shù).18、③【分析】根據(jù)過直線外一點作這條直線的垂線,及線段中垂線的做法,圓周角定理,分別作出直角三角形斜邊上的垂線,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;即可作出判斷.【題目詳解】①、在角∠BAC內(nèi)作作∠CAD=∠B,交BC于點D,根據(jù)余角的定義及等量代換得出∠B+∠BAD=90°,進而得出AD⊥BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;②、以點A為圓心,略小于AB的長為半徑,畫弧,交線段BC兩點,再分別以這兩點為圓心,大于兩交點間的距離為半徑畫弧,兩弧相交于一點,過這一點與A點作直線,該直線是BC的垂線;根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形是彼此相似的;③、以點B為圓心BA的長為半徑畫弧,交BC于點E,再以E點為圓心,AB的長為半徑畫弧,在BC的另一側(cè)交前弧于一點,過這一點及A點作直線,該直線不一定是BE的垂線;從而就不能保證兩個小三角形相似;④、以AB為直徑作圓,該圓交BC于點D,根據(jù)圓周角定理,過AD兩點作直線該直線垂直于BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;故答案為:③.【題目點撥】此題主要考查了相似變換以及相似三角形的判定,正確掌握相似三角形的判定方法是解題關(guān)鍵.三、解答題(共66分)19、(1)反比例函數(shù)解析式為y=﹣;一次函數(shù)解析式為y=﹣x+2;(2)P點坐標為(0,2).【分析】(1))先把點A點坐標代入y=中求出k2得到反比例函數(shù)解析式為y=-;再把B(3,n)代入y=-中求出n得到得B(3,-1),然后利用待定系數(shù)法求一次函數(shù)解析式;(2)設(shè)P(x,-x+2),利用三角形面積公式得到AP:PB=1:3,即PB=3PA,根據(jù)兩點間的距離公式得到(x-3)2+(-x+2+1)2=9[(x+1)2+(-x+2-3)2],然后解方程求出x即可得到P點坐標.【題目詳解】(1)把點A(﹣1,3)代入y=得k2=﹣1×3=﹣3,則反比例函數(shù)解析式為y=﹣;把B(3,n)代入y=﹣得3n=﹣3,解得n=﹣1,則B(3,﹣1),把A(﹣1,3),B(3,﹣1)代入y=k1x+b得,解得,∴一次函數(shù)解析式為y=﹣x+2;(2)設(shè)P(x,﹣x+2),∵S△APO:S△BOP=1:3,∴AP:PB=1:3,即PB=3PA,∴(x﹣3)2+(﹣x+2+1)2=9[(x+1)2+(﹣x+2﹣3)2],解得x1=0,x2=﹣3(舍去),∴P點坐標為(0,2).【題目點撥】本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標,把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.也考查了待定系數(shù)法求函數(shù)解析式.20、(1)點B的坐標為(1,3);(2)點D的坐標為(,0);(3)存在,當t=s或s時,△APQ與△ADB相似.【分析】(1)根據(jù)正切的定義求出BC,得到點B的坐標;(2)根據(jù)△ABC∽△ADB,得到=,代入計算求出AD,得到點D的坐標;(3)分△APQ∽△ABD、△AQP∽△ABD兩種情況,根據(jù)相似三角形的性質(zhì)列式計算即可.【題目詳解】解:(1)∵A(﹣3,0),C(1,0),∴AC=4,∵∠ACB=90°,tan∠BAC=,∴=,即=,解得,BC=3,∴點B的坐標為(1,3);(2)如圖1,作BD⊥BA交x軸于點D,則∠ACB=∠ABD=90°,又∠A=∠A,∴△ABC∽△ADB,∴=,在Rt△ABC中,AB===5,∴=,解得,AD=,則OD=AD﹣AO=,∴點D的坐標為(,0);(3)存在,由題意得,AP=2t,AQ=﹣t,當PQ⊥AB時,PQ∥BD,∴△APQ∽△ABD,∴=,即=,解得,t=,當PQ⊥AD時,∠AQP=∠ABD,∠A=∠A,∴△AQP∽△ABD,∴=,即=,解得,t=,綜上所述,當t=s或s時,△APQ與△ADB相似.【題目點撥】本題考查的是相似三角形的判定和性質(zhì)、坐標與圖形性質(zhì),掌握相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.21、(1)詳見解析;(2)詳見解析;(3)QO=.【分析】(1)由四邊形ABCD是正方形,得到AD=BC,∠DAB=∠ABC=90°,根據(jù)全等三角形的性質(zhì)得到∠P=∠Q,根據(jù)余角的性質(zhì)得到AQ⊥DP.(2)根據(jù)相似三角形的性質(zhì)得到AO2=OD?OP(3根據(jù)相似三角形的性質(zhì)得到BE=,求得QE=,由△QOE∽△PAD,可得,解決問題.【題目詳解】(1)證明:∵四邊形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP與△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;(2)證明:∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD?OP.(3)解:∵BP=1,AB=3,∴AP=4,∵△PBE∽△PAD,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴=∴QO=.【題目點撥】本題屬于相似形綜合題,考查了相似三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),正方形的性質(zhì),三角函數(shù)的定義,熟練掌握全等三角形或相似三角形的判定和性質(zhì)是解題的關(guān)鍵.22、(1)詳見解析;(2)【分析】(1)證法一:連接,利用圓周角定理得到,從而證明,然后利用同弧所對的圓周角相等及三角形外角的性質(zhì)得到,從而使問題得解;證法二:連接,,由圓周角定理得到,從而判定,得到,然后利用圓內(nèi)接四邊形對角互補可得,從而求得,使問題得解;(2)首先利用勾股定理和三角形面積求得AG的長,解法一:過點作于點,利用勾股定理求GH,CH,CD的長;解法二:過點作于點,利用AA定理判定,然后根據(jù)相似三角形的性質(zhì)列比例式求解.【題目詳解】(1)證法一:連接.∵為的直徑,∴,∴∵,∴∴∴.∵∴∵,∴∴.證法二:連接,.∵為的直徑,∴∵∴∴,∴∴∵∴∵∴∴∴∵四邊形內(nèi)接于,∴∴∴∴.(2)解:在中,,,,根據(jù)勾股定理得.連接,∵為的直徑,∴∴∴∵∴∵∴∴∴四邊形是平行四邊形.∴.在中,,∴解法一:過點作于點∴在中,,∴在中,∴在中,∴解法二:過點作于點∴∵∴∵∴四邊形為矩形∴.∵四邊形為平行四邊形,∴∴.∵,∴∴即∴【題目點撥】本題考查圓的綜合知識,相似三角形的判定和性質(zhì),勾股定理解直角三角形,綜合性較強,有一定難度.23、(1)見解析;(2)見解析,;(3)1.【分析】(1)分別作出點B、C關(guān)于原點對稱的點,然后連接即可;(2)根據(jù)網(wǎng)格特點,找到AB的中點D,作直線CD,根據(jù)點D的位置寫出坐標即可;(3)連接BP,證明△BPC是等腰直角三角形,繼而根據(jù)正切的定義進行求解即可.【題目詳解】(1)如圖所示,線段B1C1即為所求作的;(2)如圖所示,D(-1,-4);(3)連接BP,則有BP2=32+12=10,BC2=32+12=10,BC2=42+22=20,BP2+BC2=PC2,∴△BPC是等腰直角三角形,∠PBC=90°,∴∠BCP=45°,∴tan∠BCP=1,故答案為1.【題目點撥】本題考查了作圖——中心對稱,三角形中線的性質(zhì),勾股定理的逆定理,正切,熟練掌握相關(guān)知識并能靈活運用網(wǎng)格的結(jié)構(gòu)特征是解題的關(guān)鍵.24、(1)30°(2)證明見解析【分析】(1)通過平行四邊形的性質(zhì)、中點的性質(zhì)、平行線的性質(zhì)去證明,可得,再根據(jù)求解即可;(2)延長FE至點N,使,連接AN,通過證明,可得,再根據(jù)特殊角的銳角三角函數(shù)值,即可得證.【題目詳解】(1)∵四邊形ABCD為平行四邊形∵M為AD的中點即即;(2)延長FE至點N,使,連接AN,由(1)知,.【題目點撥】本題考查了平行四邊形的綜合問題,掌握平行四邊形的性質(zhì)、平行線的性質(zhì)、全等三角形的性質(zhì)以及判定定理、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人委托理財合同樣本
- 公務(wù)租車合同標準文本
- PLC編程合同樣本
- 人工服務(wù)購銷合同標準文本
- 上海屋頂防水工程合同標準文本
- 公司與油漆合同樣本
- 鄉(xiāng)鎮(zhèn)土地征用合同樣本
- aia合同標準文本1997版
- 其他公司合同樣本
- 代理銷售居間合同樣本
- 2024年全國統(tǒng)一高考英語試卷(新課標Ⅰ卷)含答案
- 詩歌題材實用課件七:談禪說理
- 普華永道財務(wù)管理與集團內(nèi)部控制課件
- 小學教科版四年級下冊科學《種子長出了根》教學反思
- 常用CMYK色值表大全
- 消化道出血護理ppt(共17張PPT)
- 珠三角一年斷指四萬
- 2022版義務(wù)教育(數(shù)學)課程標準(含2022年修訂部分)
- 快板?繞口令?《玲瓏塔》
- 臺灣民法典目錄
- 8.8級螺栓上海紅本價
評論
0/150
提交評論