資料綜合amc 12b problems答案_第1頁
資料綜合amc 12b problems答案_第2頁
資料綜合amc 12b problems答案_第3頁
資料綜合amc 12b problems答案_第4頁
資料綜合amc 12b problems答案_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2008AMC12BProblemAbasketballplayermadebasketsduringagame.Eachbasketwaswortheitherorpoints.Howmanydifferentnumberscouldrepresentthetotalpointsscoredbytheplayer?Ifthebasketballplayermakes three-pointshotsandtwo-pointshots,hescorespoints.Clearlyeveryvalue yieldsanumberoftotalpoints.Sincehecanmakeanynumberofthree-pointshotsbetweenandinclusive,thenumberofdifferentpointtotalsis.ProblemAblockofcalendardatesisshown.Theorderofthenumbersinthesecondrowistobereversed.Thentheorderofthenumbersinthefourthrowistobereversed.Finally,thenumbersoneachdiagonalaretobeadded.Whatwillbethepositivedifferencebetweenthetwodiagonalsums?Afterreversingthenumbersonthesecondandfourthrows,theblockwilllooklikeThedifferencebetweenthetwodiagonalsums.ProblemAsemiprobaseballleaguehasteamswithplayerseach.Leaguerulesstatethataplayermustbepaidatleastdollars,andthatthetotalofallplayers'salariesforeachteamcannotexceeddollars.Whatisthemaximumpossibllesalary,indollars,forasingleplayer?makestheminimumpossibleandthatthecombinedsalariestotalthemaximumofThemaximumanyplayercouldmakeisdollars(answerchoiceProblemOncircle,pointsandareonthesamesideofdiameter,,and.Whatistheratiooftheareaofthesmallersectortotheareaofthecircle?.Sinceacircle ,thedesiredratioisProblemAclasscollectsdollarstobuyflowersforaclassmatewhoisinthehospital.Rosescostdollarseach,andcarnationscostdollarseach.Nootherflowersaretobeused.Howmanydifferentbouquetscouldbepurchasedforexactlydollars?Theclasscouldsendjustcarnations(25ofthem).Theycouldalsosend22carnationsand2roses,19carnationsand4roses,andsoon,downto1carnationand16roses.Thereare9totalpossibilities(from0to16roses,incrementingby2ateachstep),whichisanswerchoiceC.ProblemPostmanPetehasapedometertocounthissteps.Thepedometerrecordsuptosteps,thenflipsovertoonthenextstep.Peteplanstodeterminehismileageforayear.OnJanuaryPetesetsthepedometerto.Duringtheyear,thepedometerflipsfromtoforty-fourtimes.OnDecemberthepedometerreads.Petetakesstepspermile.WhichofthefollowingisclosesttothenumberofmilesPetewalkedduringtheyear?Everytimethepedometerflips,Petehaswalkedsteps.Therefore,Petehaswalkedatotalofsteps,whichismiles,whichisclosesttoanswerchoiceProblemForreal , .WhatisProblemPointsandlieon.The istimesthelengthof,andlengthofistimesthelengthof .Thelengthofiswhatfractionofthelengthof? Problem areonacircleofradiusand.Point isthemidpointoftheminorarc .Whatisthelengthofthelinesegment Trig betheanglethatsubtendsthearcAB.BythelawofThehalf-angleformulasays,whichisanswerchoiceOtherDefineDasthemidpointofAB,andRthecenterofthecircle.R,C,andDarecollinear,andsinceDisthemidpointofAB,,andso. ,andProblemBricklayerBrendawouldtakehourstobuildachimneyalone,andbricklayerBrandonwouldtakehourstobuilditalone.Whentheyworktogethertheytalkalot,andtheircombinedoutputisdecreasedbybricksperhour.Workingtogether,theybuildthechimneyinhours.Howmanybricksareinthechimney? bethenumberofbricksintheWithouttalking,BrendaandBrandonlayandbricksperhourrespectively,sotogethertheylayperhourtogether.Sincetheyfinishthechimney hours,..ProblemAcone-shapedmountainhasitsbaseontheoceanfloorandhasaheightof8000feet.Thetopofthevolumeofthemountainisabovewater.Whatisthedepthoftheoceanatthebaseofthemountaininfeet?Inacone,radiusandheighteachvaryinverselywithincreasingheight(i.e.theradiusoftheconeformedbycuttingoffthemountainatfeetishalfthatoftheoriginalmountain).Therefore,volumevariesastheinversecubeofincreasingPlugginginourgivencondition,,answerchoiceProblemForeachpositiveinteger ,themeanofthefirst termsofasequenceis isthethtermofthesequence?LettingbethenthpartialsumoftheTheonlypossiblesequencewiththisresultisthesequenceofoddProblem ofequilateralisintheinteriorofunitsquare .Let theregionconsistingofallpointsinside andoutsidewhosedistancefrom isbetweenand.Whatistheareaof ProblemAcirclehasaradiusofandacircumferenceof.WhatisLetbethecircumferenceofthecircle,andletbetheradiusoftheUsinglogproperties,. ,Problem15(noOneachsideofaunitsquare,anequilateraltriangleofsidelength1isconstructed.Oneachnewsideofeachequilateraltriangle,anotherequilateraltriangleofsidelength1isconstructed.Theinteriorsofthesquareandthe12triangleshavenopointsincommon.Let betheregionformedbytheunionofthesquareandallthetriangles,and bethesmallestconvexpolygonthatcontains .Whatistheareaoftheregionthatisinside butoutside )最小,只有A是正確的,BCEDE的話面積都比1/4的時(shí)候大。ProblemArectangularfloormeasuresbyfeet,whereandarepositiveintegerstothesidesofthefloor.Theunpaintedpartofthefloorformsaborderofwidthfootaroundthepaintedrectangleandoccupieshalfoftheareaoftheentirefloor.Howmanypossibilitiesaretherefortheorderedpair?BySimon'sFavoriteFactoringSinceandaretheonlypositivefactoringsof.oryieldingsolutions.Noticethatbecause,thereversedpairsareProblemLetthecoordinatesof beandthecoordinatesof be.Sincethe isparallelto mustbe.Thenslopeof .Theslopeof Supposing, isperpendicularto and,itfollows,tothe asegmentofthelinex=m.Butthatwouldmeanthatthecoordinatesof,contradictingthegiventhataredistinct..Byasimilarlogic,neitherisThismeansthatand isperpendicularto .Sotheslopeof thenegativereciprocaloftheslopeof ,yielding.Becauseisthelengthofthealtitudeoftriangle ,and thelengthof ,theareaof.Since .,whosedigitssum Problem.Apyramidhasasquare and Theareaof .,andtheareasof areand ,respectively.Whatisthevolumeofthepyramid? betheheightofthepyramidand bethedistancefrom .Thesidelengthofthebaseis14.Thesidelengthsofandareand,respectively.WehaveasystemsofequationsthroughthePythagoreanTheorem:Settingthemequaltoeachotherandsimplifying.Therefore,,andthevolumeofthepyramidisProblemAfunctionisdefined forallcomplex arecomplexnumbersand.Supposethatandarebothreal.WhatisthesmallestpossiblevalueofWeneedonlyconcernourselveswiththeimaginaryportionsofand(bothofwhichmustbe0).Theseare:Sinceappearsinbothequations,weletitequal0tosimplifytheequations.Thisyieldstwosingle-variableequations.Equation1tellsusthattheimaginarypartof mustbe ,andequation2tellsusthattherealpartofmustbe. 'sabsolutevalue,welet,answerchoiceB.ProblemMichaelwalksattherateoffeetpersecondonalongstraightpath.Trashpailsarelocatedeveryfeetalongthepath.AgarbagetrucktravelsatfeetpersecondinthesamedirectionasMichaelandstopsforsecondsateachpail.AsMichaelpassesapail,henoticesthetruckaheadofhimjustleavingthenextpail.HowmanytimeswillMichaelandthetruckmeet?PickacoordinatesystemwhereMichael'sstartingpailisandtheonewheretruckstarts.bethecoordinatesofMichaelandtheafterMeetingsbetheir(signed)distanceafter.WehaveThetruckalwaysmovesforseconds,thenstandsstillfor.DuringthefirstsecondsofthecyclethetruckmovesbymetersandMichaelby,henceduringthefirst secondsofthecycleincreasesby .Duringtheremaining decreasesby.Fromthisobservationitisobviousthatafterfourfullcycles,i.e.at,wewillhaveforthefirsttime.Duringthefifthcycle,willfirstgrowfrom ,thenfallfrom HenceMichaelovertakesthetruckwhileitisstandingatthepail.Duringthesixthcycle,willfirstgrowfromto,thenfallfromto.Hencethetruckstartsmoving,overtakesMichaelontheirwaytothenextpail,andthenMichaelovertakesthetruckwhileitisstandingatthepail.Duringtheseventhcycle,willfirstgrowfromto,thenfallfromObviously,fromthispointonwillalwaysbenegative,meaningthatMichaelisalreadytoofarahead.Hencewefoundallmeetings.ThemovementofMichaelandthetruckisplottedbelow:Michaelinblue,thetruckinred.ProblemTwocirclesofradius1aretobeconstructedasfollows.Thecenterofcircle chosenuniformlyandatrandomfromthelinesegmentjoiningand.Thecenterofcircle ischosenuniformlyandatrandom,andindependentlyofthefirstchoice,fromthelinesegmentjoiningto.Whatistheprobabilitythat Twocirclesintersectifthedistancebetweentheircentersislessthanthesumoftheirradii.Inthisproblem, intersectiffInotherwords,thetwochosenX-coordinatesmustdifferbynomorethan.Tofindthisprobability,wedividetheproblemintocases: rangeforagiven (ontheleft)(ontheright)allover2(therangeofpossiblevalues).Thetotalprobabilityforthisrangeisthesumofalltheseprobabilitiesof (overtherangeof )dividedbythetotalrangeof.Thus,thetotalpossibilityforthisinterval.isontheinterval.Inthiscase,anyvalueof willdo,sotheprobabilityfortheintervalissimply.isontheinterval.Thisisidentical,bysymmetry,tocaseThetotalprobabilityistherefore SyntheticCirclescenteredatandwilloverlapifandareclosertoeachotherthanifthecirclesweretangent.Thecirclesaretangentwhenthedistancebetweentheircentersisequaltothesumoftheirradii.Thus,thedistancefromtowillbe areseparatedbyvertically,theymustbeseparatedbyhorizontally.Thus,if,thecirclesintersect.Now,plotthetworandomvariablesandonthecoordinateplane.Eachvariablerangesfrom .Thecirclesintersectifthevariablesarewithinofeachother.Thus,theareainwhichthecirclesdon'tintersectisequaltothetotalareaoftwosmalltrianglesonoppositecorners,eachofarea.WeconcludetheprobabilitythecirclesintersectProblemAparkinglothas16spacesinarow.Twelvecarsarrive,eachofwhichrequiresoneparkingspace,andtheirdriverschosespacesatrandomfromamongtheavailablespaces.AuntieEmthenarrivesinherSUV,whichrequires2adjacentspaces.Whatistheprobabilitythatsheisabletopark?AuntieEmwon'tbeabletoparkonlywhennoneofthefouravailablespotstouch.Wecanformabijectionbetweenallsuchcasesandthenumberofwaystopickfourspotsoutof13:sincenoneofthespotstouch,removeaspotfrombetweeneachofthecars.Fromtheotherdirection,givenfourspotsoutof13,simplyaddaspotbetweeneach.SotheprobabilityshecanparkProblemThesumofthebase-logarithmsofthedivisorsofis.What willbeoftheform.Usingthe ,itsufficestocountthetotalnumberof2'sand5'srunningthroughallpossible .Foreveryfactor,therewillbeanother,soitsufficestocountthetotalnumberof2'soccurringinallfactors(becauseofthissymmetry,thenumberof5'swillbeequal).Andsince,thefinalsumwillbethetotalnumberofoccurringinallfactorsofTherearechoicesfortheexponentof5ineachfactor,andforeachofthosechoices,therearefactors(eachcorrespondingtoadifferentexponentof2),yieldingtotal2's.Thetotalnumberof2'sistherefore.Plugginginouranswerchoicesintoformulayields11(answerchoice)asthecorrectForeverydivisorof, ,wehave.Therearedivisors that .Afterontheparity ,wefindthattheanswerisgiven.ProblemLet.Distinctpoints lieonthe -axis,anddistinctpointslieonthegraphof .Foreverypositiveintegerisanequilateralt

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論