山東省臨沂蘭陵縣聯(lián)考2024屆數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
山東省臨沂蘭陵縣聯(lián)考2024屆數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
山東省臨沂蘭陵縣聯(lián)考2024屆數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
山東省臨沂蘭陵縣聯(lián)考2024屆數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
山東省臨沂蘭陵縣聯(lián)考2024屆數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省臨沂蘭陵縣聯(lián)考2024屆數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如果兩個相似多邊形的面積比為4:9,那么它們的周長比為()A.: B.2:3 C.4:9 D.16:812.如圖,點A、B、C是⊙0上的三點,若∠OBC=50°,則∠A的度數(shù)是()A.40° B.50° C.80° D.100°3.某人沿著坡度為1:2.4的斜坡向上前進了130m,那么他的高度上升了()A.50m B.100m C.120m D.130m4.如圖,為線段上一動點(點不與點、重合),在線段的同側(cè)分別作等邊和等邊,連結(jié)、,交點為.若,求動點運動路徑的長為()A. B. C. D.5.若關(guān)于x的一元二次方程kx2﹣2x+1=0有兩個不相等的實數(shù)根,則實數(shù)k的取值范圍是()A.k>1 B.k<1 C.k>1且k≠0 D.k<1且k≠06.如圖△ABC中,BE平分∠ABC,DE∥BC,若DE=2AD,AE=2,那么AC的長為()A.3 B.4 C.5 D.67.老師出示了如圖所示的小黑板上的題后,小華說:過點;小明說:;小穎說:軸被拋物線截得的線段長為2,三人的說法中,正確的有()A.1個 B.2個 C.3個 D.0個8.計算=()A. B. C. D.9.畢業(yè)前期,某班的全體學(xué)生互贈賀卡,共贈賀卡1980張.設(shè)某班共有名學(xué)生,那么所列方程為()A. B.C. D.10.某林業(yè)部門要考察某幼苗的成活率,于是進行了試驗,下表中記錄了這種幼苗在一定條件下移植的成活情況,則下列說法不正確的是()移植總數(shù)400150035007000900014000成活數(shù)369133532036335807312628成活的頻率09230.89009150.9050.8970.902A.由此估計這種幼苗在此條件下成活的概率約為0.9B.如果在此條件下再移植這種幼苗20000株,則必定成活18000株C.可以用試驗次數(shù)累計最多時的頻率作為概率的估計值D.在大量重復(fù)試驗中,隨著試驗次數(shù)的增加,幼苗成活的頻率會越來越穩(wěn)定,因此可以用頻率估計概率二、填空題(每小題3分,共24分)11.如圖,在矩形ABCD中,AB=2,AD=,以點C為圓心,以BC的長為半徑畫弧交AD于E,則圖中陰影部分的面積為__________.12.如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論:①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣1,0);⑤當(dāng)1<x<4時,有y2<y1,其中正確的是________.13.動點A(m+2,3m+4)在直線l上,點B(b,0)在x軸上,如果以B為圓心,半徑為1的圓與直線l有交點,則b的取值范圍是_____.14.如圖,已知PA,PB是⊙O的兩條切線,A,B為切點.C是⊙O上一個動點.且不與A,B重合.若∠PAC=α,∠ABC=β,則α與β的關(guān)系是_______.15.已知P是線段AB的黃金分割點,PA>PB,AB=2cm,則PA為___cm.16.二次函數(shù)y=x2+4x+a圖象上的最低點的橫坐標為_____.17.某一時刻身高160cm的小王在太陽光下的影長為80cm,此時他身旁的旗桿影長10m,則旗桿高為______.18.如圖,四邊形中,,連接,,點為中點,連接,,,則__________.三、解答題(共66分)19.(10分)如圖:在平面直角坐標系中,直線:與軸交于點,經(jīng)過點的拋物線的對稱軸是.(1)求拋物線的解析式.(2)平移直線經(jīng)過原點,得到直線,點是直線上任意一點,軸于點,軸于點,若點在線段上,點在線段的延長線上,連接,,且.求證:.(3)若(2)中的點坐標為,點是軸上的點,點是軸上的點,當(dāng)時,拋物線上是否存在點,使四邊形是矩形?若存在,請求出點的坐標,如果不存在,請說明理由.20.(6分)在中,是邊上的中線,點在射線上,過點作交的延長線于點.(1)如圖1,點在邊上,與交于點證明:;(2)如圖2,點在的延長線上,與交于點.①求的值;②若,求的值21.(6分)有一個人患了流感,經(jīng)過兩輪傳染后共有196個人患了流感,每輪傳染中平均一個人傳染了幾個人?22.(8分)某小區(qū)為了促進生活垃圾的分類處理,將生活垃圾分為廚余、可回收和其他三類,分別記為,,,并且設(shè)置了相應(yīng)的垃圾箱,“廚余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分別記為,,.(1)小亮將媽媽分類好的三類垃圾隨機投入到三種垃圾箱內(nèi),請用畫樹狀圖或表格的方法表示所有可能性,并請求出小亮投放正確的概率.(2)請你就小亮投放垃圾的事件提出兩條合理化建議.23.(8分)閱讀以下材料,并按要求完成相應(yīng)的任務(wù).已知平面上兩點,則所有符合且的點會組成一個圓.這個結(jié)論最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),稱阿氏圓.阿氏圓基本解法:構(gòu)造三角形相似.(問題)如圖1,在平面直角坐標中,在軸,軸上分別有點,點是平面內(nèi)一動點,且,設(shè),求的最小值.阿氏圓的關(guān)鍵解題步驟:第一步:如圖1,在上取點,使得;第二步:證明;第三步:連接,此時即為所求的最小值.下面是該題的解答過程(部分):解:在上取點,使得,又.任務(wù):將以上解答過程補充完整.如圖2,在中,為內(nèi)一動點,滿足,利用中的結(jié)論,請直接寫出的最小值.24.(8分)在平面直角坐標系xOy中,直線y=x+b(k≠0)與雙曲線一個交點為P(2,m),與x軸、y軸分別交于點A,B兩點.(1)求m的值;(2)求△ABO的面積;25.(10分)某便民超市把一批進價為每件12元的商品,以每件定價20元銷售,每天能夠售出240件.經(jīng)過調(diào)查發(fā)現(xiàn):如果每件漲價1元,那么每天就少售20件;如果每件降價1元,那么每天能夠多售出40件.(1)如果降價,那么每件要降價多少元才能使銷售盈利達到1960元?(2)如果漲價,那么每件要漲價多少元オ能使銷售盈利達到1980元?26.(10分)某校為響應(yīng)全民閱讀活動,利用節(jié)假日面向社會開放學(xué)校圖書館.據(jù)統(tǒng)計,第一個月進館128人次,進館人次逐月增加,到第三個月進館達到288人次,若進館人次的月平均增長率相同.(1)求進館人次的月平均增長率;(2)因條件限制,學(xué)校圖書館每月接納能力不得超過500人次,在進館人次的月平均增長率不變的條件下,校圖書館能否接待第四個月的進館人次,并說明理由.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)面積比為相似比的平方即可求得結(jié)果.【題目詳解】解:∵兩個相似多邊形的面積比為4:9,∴它們的周長比為:=.故選B.【題目點撥】本題主要考查圖形相似的知識點,解此題的關(guān)鍵在于熟記兩個相似多邊形的面積比為其相似比的平方.2、A【分析】在等腰三角形OBC中求出∠BOC,繼而根據(jù)圓周角定理可求出∠A的度數(shù).【題目詳解】解:∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°﹣50°=80°,∴∠A=∠BOC=40°;故選A.【題目點撥】本題考查在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半.3、A【分析】根據(jù)坡度的定義可以求得AC、BC的比值,根據(jù)AC、BC的比值和AB的長度即可求得AC的值,即可解題.【題目詳解】解:如圖,根據(jù)題意知AB=130米,tanB==1:2.4,設(shè)AC=x,則BC=2.4x,則x2+(2.4x)2=1302,解得x=50(負值舍去),即他的高度上升了50m,故選A.【題目點撥】本題考查了勾股定理在直角三角形中的運用,坡度的定義及直角三角形中三角函數(shù)值的計算,屬于基礎(chǔ)題.4、B【分析】根據(jù)題意分析得出點Q運動的軌跡是以AB為弦的一段圓弧,當(dāng)點P運動到AB的中點處時PQ取得最大值,過點P作OP⊥AB,取AQ的中點E作OE⊥AQ交PQ于點O,連接OA,設(shè)半徑長為R,則根據(jù)勾股定列出方程求出R的值,再根據(jù)弧長計算公式l=求出l值即可.【題目詳解】解:依題意可知,點Q運動的軌跡是以AB為弦的一段圓弧,當(dāng)點P運動到AB的中點處時PQ取得最大值,如圖所示,連接PQ,取AQ的中點E作OE⊥AQ交直線PQ于點O,連接OA,OB.∵P是AB的中點,∴PA=PB=AB=6=3.∵和是等邊三角形,∴AP=PC,PB=PD,∠APC=∠BPD=60°,∴AP=PD,∠APD=120°.∴∠PAD=∠ADP=30°,同理可證:∠PBQ=∠BCP=30°,∴∠PAD=∠PBQ.∵AP=PB,∴PQ⊥AB.∴tan∠PAQ==∴PQ=.在Rt△AOP中,即解得:OA=.∵sin∠AOP===∴∠AOP=60°.∴∠AOB=120°.∴l(xiāng)===.故答案選B.【題目點撥】本題考查了弧長計算公式,等邊三角形的性質(zhì),垂直平分線的性質(zhì),等腰三角形的性質(zhì),勾股定理,三角函數(shù)等知識,綜合性較強,明確點Q的運動軌跡是一段弧是解題的關(guān)鍵.5、D【解題分析】根據(jù)一元二次方程的定義和△的意義得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范圍.【題目詳解】∵關(guān)于x的一元二次方程kx2﹣2x+1=1有兩個不相等的實數(shù)根,∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,解得k<1且k≠1.∴k的取值范圍為k<1且k≠1.故選D.【題目點撥】本題考查了一元二次方程ax2+bx+c=1(a≠1)的根的判別式△=b2﹣4ac:當(dāng)△>1,方程有兩個不相等的實數(shù)根;當(dāng)△=1,方程有兩個相等的實數(shù)根;當(dāng)△<1,方程沒有實數(shù)根.也考查了一元二次方程的定義.6、D【分析】首先證明BD=DE=2AD,再由DE∥BC,可得,求出EC即可解決問題.【題目詳解】解:∵DE∥BC,∴∠DEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DEB=∠DBE,∴DB=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴,∴,∴EC=4,∴AC=AE+EC=2+4=6,故選:D.【題目點撥】此題考查平行線分線段成比例,由DE∥BC,可得,求出EC即可解決問題.7、B【分析】根據(jù)圖上給出的條件是與x軸交于(1,0),叫我們加個條件使對稱軸是,意思就是拋物線的對稱軸是是題目的已知條件,這樣可以求出的值,然后即可判斷題目給出三人的判斷是否正確.【題目詳解】∵拋物線過(1,0),對稱軸是,∴解得,

∴拋物線的解析式為,

當(dāng)時,,所以小華正確;∵,所以小明正確;

拋物線被軸截得的線段長為2,已知過點(1,0),則可得另一點為(-1,0)或(3,0),所以對稱軸為y軸或,此時答案不唯一,所以小穎錯誤.綜上,小華、小明正確,

故選:B.【題目點撥】本題考查了拋物線與軸的交點以及待定系數(shù)法求二次函數(shù)解析式,利用待定系數(shù)法求出拋物線的解析式是解題的關(guān)鍵.8、C【解題分析】分析:分子根據(jù)合并同類項計算,分母根據(jù)同底數(shù)冪的乘法計算.詳解:原式=.故選C.點睛:本題考查了合并同類項和同底數(shù)冪的乘法計算,合并同類項的方法是系數(shù)相加,字母和字母的指數(shù)不變;同底數(shù)的冪相乘,底數(shù)不變,把指數(shù)相加.9、D【分析】根據(jù)題意得:每人要贈送(x-1)張賀卡,有x個人,然后根據(jù)題意可列出方程:(x-1)x=1.【題目詳解】解:根據(jù)題意得:每人要贈送(x-1)張賀卡,有x個人,

∴全班共送:(x-1)x=1,

故選:D.【題目點撥】此題主要考查了由實際問題抽象出一元二次方程,本題要注意讀清題意,弄清楚每人要贈送(x-1)張賀卡,有x個人是解決問題的關(guān)鍵.10、B【分析】大量重復(fù)試驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率即可得到答案.【題目詳解】解:由此估計這種幼苗在此條件下成活的概率約為0.9,故A選項正確;如果在此條件下再移植這種幼苗20000株,則大約成活18000株,故B選項錯誤;可以用試驗次數(shù)累計最多時的頻率作為概率的估計值,故C選項正確;在大量重復(fù)試驗中,隨著試驗次數(shù)的增加,幼苗成活的頻率會越來越穩(wěn)定,因此可以用頻率估計概率,故D選項正確.故選:B.【題目點撥】本題主要考查的是利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率,掌握這個知識點是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】連接CE,根據(jù)矩形和圓的性質(zhì)、勾股定理可得,從而可得△CED是等腰直角三角形,可得,即可根據(jù)陰影部分的面積等于扇形面積加三角形的面積求解即可.【題目詳解】連接CE∵四邊形ABCD是矩形,AB=2,AD=,∴∵以點C為圓心,以BC的長為半徑畫弧交AD于E∴∴∴△CED是等腰直角三角形∴∴∴陰影部分的面積故答案為:.【題目點撥】本題考查了陰影部分面積的問題,掌握矩形和圓的性質(zhì)、勾股定理、等腰直角三角形的性質(zhì)、扇形的面積公式、三角形面積公式是解題的關(guān)鍵.12、①③⑤【解題分析】①根據(jù)拋物線的開口方向以及對稱軸為x=1,即可得出a、b之間的關(guān)系以及ab的正負,由此得出①正確,根據(jù)拋物線與y軸的交點在y軸正半軸上,可知c為正結(jié)合a<0、b>0即可得出②錯誤,將拋物線往下平移3個單位長度可知拋物線與x軸只有一個交點從而得知③正確,根據(jù)拋物線的對稱性結(jié)合拋物線的對稱軸為x=1以及點B的坐標,即可得出拋物線與x軸的另一交點坐標,④正確,⑤根據(jù)兩函數(shù)圖象的上下位置關(guān)系即可解題.【題目詳解】∵拋物線的頂點坐標A(1,3),∴對稱軸為x=-=1,∴2a+b=0,①正確,∵a,b,拋物線與y軸交于正半軸,∴c∴abc0,②錯誤,∵把拋物線向下平移3個單位長度得到y(tǒng)=ax2+bx+c-3,此時拋物線的頂點也向下平移3個單位長度,∴頂點坐標為(1,0),拋物線與x軸只有一個交點,即方程ax2+bx+c=3有兩個相等的實數(shù)根,③正確.∵對稱軸為x=-=1,與x軸的一個交點為(4,0),根據(jù)對稱性質(zhì)可知與x軸的另一個交點為(-2,0),④錯誤,由拋物線和直線的圖像可知,當(dāng)1<x<4時,有y2<y1.,⑤正確.【題目點撥】本題考查了二次函數(shù)的圖像和性質(zhì),熟悉二次函數(shù)的性質(zhì)是解題關(guān)鍵.13、【分析】先利用點A求出直線l的解析式,然后求出以B為圓心,半徑為1的圓與直線l相切時點B的坐標,即b的值,從而確定以B為圓心,半徑為1的圓與直線l有交點時b的取值范圍.【題目詳解】設(shè)直線l的解析式為∵動點A(m+2,3m+4)在直線l上,將點A代入直線解析式中得解得∴直線l解析式為y=3x﹣2如圖,直線l與x軸交于點C(,0),交y軸于點A(0,﹣2)∴OA=2,OC=∴AC=若以B為圓心,半徑為1的圓與直線l相切于點D,連接BD∴BD⊥AC∴sin∠BCD=sin∠OCA=∴∴∴以B為圓心,半徑為1的圓與直線l相切時,B點坐標為或∴以B為圓心,半徑為1的圓與直線l有交點,則b的取值范圍是故答案為【題目點撥】本題主要考查直線與圓的位置關(guān)系,掌握銳角三角函數(shù)是解題的關(guān)鍵.14、或【分析】分點C在優(yōu)弧AB上和劣弧AB上兩種情況討論,根據(jù)切線的性質(zhì)得到∠OAC的度數(shù),再根據(jù)圓周角定理得到∠AOC的度數(shù),再利用三角形內(nèi)角和定理得出α與β的關(guān)系.【題目詳解】解:當(dāng)點C在優(yōu)弧AB上時,如圖,連接OA、OB、OC,∵PA是⊙O的切線,∴∠PAO=90°,∴∠OAC=α-90°=∠OCA,∵∠AOC=2∠ABC=2β,∴2(α-90°)+2β=180°,∴;當(dāng)點C在劣弧AB上時,如圖,∵PA是⊙O的切線,∴∠PAO=90°,∴∠OAC=90°-α=∠OCA,∵∠AOC=2∠ABC=2β,∴2(90°-α)+2β=180°,∴.綜上:α與β的關(guān)系是或.故答案為:或.【題目點撥】本題考查了切線的性質(zhì),圓周角定理,三角形內(nèi)角和定理,等腰三角形的性質(zhì),利用圓周角定理是解題的關(guān)鍵,同時注意分類討論.15、【分析】把一條線段分割為兩部分,使較大部分與全長的比值等于較小部分與較大的比值,則這個比值即為黃金分割,其比值是【題目詳解】∵P為線段AB的黃金分割點,且PA>PB,AB=2cm,∴故答案為.【題目點撥】分析題意可知,本題主要考查了黃金分割,弄清楚黃金分割的定義是解答此題的關(guān)鍵;16、﹣1.【解題分析】直接利用二次函數(shù)最值求法得出函數(shù)頂點式,進而得出答案.【題目詳解】解:∵二次函數(shù)y=x1+4x+a=(x+1)1﹣4+a,∴二次函數(shù)圖象上的最低點的橫坐標為:﹣1.故答案為﹣1.【題目點撥】此題主要考查了二次函數(shù)的最值,正確得出二次函數(shù)頂點式是解題關(guān)鍵.17、20m【解題分析】根據(jù)相同時刻的物高與影長成比例列出比例式,計算即可.【題目詳解】解:設(shè)旗桿的高度為xm,根據(jù)相同時刻的物高與影長成比例,得到160::10,解得.故答案是:20m.【題目點撥】本題考查的是相似三角形的應(yīng)用,掌握相似三角形的性質(zhì)是解題的關(guān)鍵.18、【分析】分別過點E,C作EF⊥AD于F,CG⊥AD于G,先得出EF為△ACG的中位線,從而有EF=CG.在Rt△DEF中,根據(jù)勾股定理求出DF的長,進而可得出AF的長,再在Rt△AEF中,根據(jù)勾股定理求出AE的長,從而可得出結(jié)果.【題目詳解】解:分別過點E,C作EF⊥AD于F,CG⊥AD于G,∴EF∥CG,∴△AEF∽△ACG,又E為AC的中點,∴F為AG的中點,∴EF=CG.又∠ADC=120°,∴∠CDG=60°,又CD=6,∴DG=3,∴CG=3,∴EF=CG=,在Rt△DEF中,由勾股定理可得,DF=,∴AF=FG=FD+DG=+3=,∴在Rt△AEF中,AE=,∴AB=AC=2AE=2.故答案為:2.【題目點撥】本題考查了相似三角形的判定與性質(zhì),中位線的性質(zhì),含30°角的直角三角形的性質(zhì)以及勾股定理,正確作出輔助線是解題的關(guān)鍵.三、解答題(共66分)19、(1);(2)證明見解析;(3)存在,點的坐標為或.【分析】(1)先求得點A的坐標,然后依據(jù)拋物線過點A,對稱軸是,列出關(guān)于a、c的方程組求解即可;

(2)設(shè)P(3n,n),則PC=3n,PB=n,然后再證明∠FPC=∠EPB,最后通過等量代換進行證明即可;

(3)設(shè),然后用含t的式子表示BE的長,從而可得到CF的長,于是可得到點F的坐標,然后依據(jù)中點坐標公式可得到,,從而可求得點Q的坐標(用含t的式子表示),最后,將點Q的坐標代入拋物線的解析式求得t的值即可.【題目詳解】解:(1)當(dāng)時,,解得,即,拋物線過點,對稱軸是,得,解得,拋物線的解析式為;(2)∵平移直線經(jīng)過原點,得到直線,∴直線的解析式為.∵點是直線上任意一點,∴,則,.又∵,∴.∵軸,軸∴∴∵,∴,∴.(3)設(shè),點在點的左側(cè)時,如圖所示,則.∵,∴.∴.∵四邊形為矩形,∴,,∴,,∴,.將點的坐標代入拋物線的解析式得:,解得:或(舍去).∴.當(dāng)點在點的右側(cè)時,如下圖所示,則.∵,∴.∴.∵四邊形為矩形,∴,,∴,,∴,.將點的坐標代入拋物線的解析式得:,解得:或(舍去).∴.綜上所述,點的坐標為或.【題目點撥】本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了矩形的性質(zhì)、待定系數(shù)法求二次函數(shù)的解析式、中點坐標公式,用含t的式子表示點Q的坐標是解題的關(guān)鍵.20、(1)證明見解析;(2)①;②1.【分析】(1)先根據(jù)平行線的性質(zhì)可得,再根據(jù)相似三角形的判定即可得證;(2)①設(shè),則,,先根據(jù)平行線的性質(zhì)可得,再根據(jù)三角形全等的判定定理與性質(zhì)可得,然后根據(jù)相似三角形的判定與性質(zhì)可得,由此即可得;②先求出,再在中,利用勾股定理可得,然后根據(jù)①中三角形全等的性質(zhì)可得,最后根據(jù)①中相似三角形的性質(zhì)即可得.【題目詳解】(1);①設(shè),則,是邊上的中線在和中,;②在中,由①已證:由①已證:.【題目點撥】本題考查了平行線的性質(zhì)、相似三角形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)、勾股定理等知識點,熟練掌握相似三角形的判定與性質(zhì)是解題關(guān)鍵.21、每輪傳染中平均一個人傳染了13個人.【分析】設(shè)平均一人傳染了x人,根據(jù)有一人患了流感,經(jīng)過兩輪傳染后共有196人患了流感,列方程求解.【題目詳解】設(shè)每輪傳染中平均一個人傳染了個人,則,即:則,解得:(不合題意,舍去)答:每輪傳染中平均一個人傳染了13個人.【題目點撥】此題考查了一元二次方程的應(yīng)用,讀懂題意,準確找到等量關(guān)系列出方程是解決問題的關(guān)鍵.此題要注意判斷所求的解是否符合題意,舍去不合題意的解.22、(1);(2)詳見解析.【分析】(1)將所有情況列在表格中,然后找出小亮投放正確的數(shù)量,即可求出概率;(2)寫出關(guān)于垃圾分類的兩條合理化建議即可.【題目詳解】解:(1)列表如下:共有種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同其中,小亮投放正確的有種:、、;因此,小亮投放正確的概率為:(2)1、充分利用媒體資源,加入普及垃圾分類和可循環(huán)利用科學(xué)知識的宣傳教育;2、在中小學(xué)教育中,增加專門的垃圾分類、資源利用和環(huán)境保護知識的內(nèi)容.【題目點撥】本題主要考查樹狀圖或列表法求隨機事件的概率,掌握隨機事件概率的求法是解題的關(guān)鍵.23、(1)(2).【分析】⑴將PC+kPD轉(zhuǎn)化成PC+MP,當(dāng)PC+kPD最小,即PC+MP最小,圖中可以看出當(dāng)C、P、M共線最小,利用勾股定理求出即可;⑵根據(jù)上一問得出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論