版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山西省孝義市)2024屆高一數(shù)學(xué)第一學(xué)期期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.專家對某地區(qū)新冠肺炎爆發(fā)趨勢進(jìn)行研究發(fā)現(xiàn),從確診第一名患者開始累計時間(單位:天)與病情爆發(fā)系數(shù)之間,滿足函數(shù)模型:,當(dāng)時,標(biāo)志著疫情將要大面積爆發(fā),則此時約為()(參考數(shù)據(jù):)A. B.C. D.2.函數(shù)的零點所在的區(qū)間為()A.(-1,0) B.(0,)C.(,1) D.(1,2)3.設(shè)扇形的周長為,面積為,則扇形的圓心角的弧度數(shù)是()A.1 B.2C.3 D.44.已知函數(shù),且,則A.3 B.C.9 D.5.某幾何體的三視圖都是全等圖形,則該幾何體一定是()A.圓柱 B.圓錐C.三棱錐 D.球體6.已知是的三個內(nèi)角,設(shè),若恒成立,則實數(shù)的取值范圍是()A. B.C. D.7.函數(shù)的值域是A. B.C. D.8.已知函數(shù),下面關(guān)于說法正確的個數(shù)是()①的圖象關(guān)于原點對稱②的圖象關(guān)于y軸對稱③的值域為④在定義域上單調(diào)遞減A.1 B.2C.3 D.49.下列函數(shù)中,既是偶函數(shù)又在上是單調(diào)遞增的函數(shù)是()A. B.C. D.10.函數(shù)(A,ω,φ為常數(shù),A>0,ω>0,)的部分圖象如圖所示,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)是奇函數(shù),則實數(shù)__________.12.已知,則_________.13.某次學(xué)科測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.則參加測試的總?cè)藬?shù)為______,分?jǐn)?shù)在之間的人數(shù)為______.14.已知,則______________15.在直角坐標(biāo)系內(nèi),已知是圓上一點,折疊該圓兩次使點分別與圓上不相同的兩點(異于點)重合,兩次的折痕方程分別為和,若圓上存在點,使,其中的坐標(biāo)分別為,則實數(shù)的取值集合為__________16.若關(guān)于x的不等式對一切實數(shù)x恒成立,則實數(shù)k的取值范圍是___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.從某小學(xué)隨機(jī)抽取100多學(xué)生,將他們的身高(單位:)數(shù)據(jù)繪制成頻率分布直方圖(如圖).(1)求直方圖中的值;(2)試估計該小學(xué)學(xué)生的平均身高;(3)若要從身高在三組內(nèi)的學(xué)生中,用分層抽樣的方法選取24人參加一項活動,則從身高在內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為多少人?18.求函數(shù)的最小正周期19.已知函數(shù),(,且)(1)求函數(shù)的定義域;(2)判斷函數(shù)的奇偶性,并證明20.已知函數(shù)的最小值正周期是(1)求的值;(2)求函數(shù)的最大值,并且求使取得最大值的x的集合21.已知.(1)求,的值;(2)求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】根據(jù)列式求解即可得答案.【題目詳解】解:因為,,所以,即,所以,由于,故,所以,所以,解得.故選:B.【題目點撥】本題解題的關(guān)鍵在于根據(jù)題意得,再結(jié)合已知得,進(jìn)而根據(jù)解方程即可得答案,是基礎(chǔ)題.2、C【解題分析】應(yīng)用零點存在性定理判斷零點所在的區(qū)間即可.【題目詳解】由解析式可知:,∴零點所在的區(qū)間為.故選:C.3、B【解題分析】根據(jù)扇形的周長為,面積為,得到,解得l,r,代入公式求解.【題目詳解】因為扇形的周長為,面積為,所以,解得,所以,所以扇形的圓心角的弧度數(shù)是2故選:B4、C【解題分析】利用函數(shù)的奇偶性以及已知條件轉(zhuǎn)化求解即可【題目詳解】函數(shù)g(x)=ax3+btanx是奇函數(shù),且,因為函數(shù)f(x)=ax3+btanx+6(a,b∈R),且,可得=﹣3,則=﹣g()+6=3+6=9故選C【題目點撥】本題考查函數(shù)的奇偶性的應(yīng)用,函數(shù)值的求法,考查計算能力.已知函數(shù)解析式求函數(shù)值,可以直接將變量直接代入解析式從而得到函數(shù)值,直接代入較為繁瑣的題目,可以考慮函數(shù)的奇偶性的應(yīng)用,利用部分具有奇偶性的特點進(jìn)行求解,就如這個題目.5、D【解題分析】任意方向上的視圖都是全等圖形的幾何體只有球,在任意方向上的視圖都是圓【題目詳解】球、長方體、三棱錐、圓錐中,任意方向上的視圖都是全等圖形的幾何體只有球,在任意方向上的視圖都是等圓,故答案為:D【題目點撥】本題考查簡單空間圖形的三視圖,本題解題的關(guān)鍵是看出各個圖形的在任意方向上的視圖,本題是一個基礎(chǔ)題6、D【解題分析】先化簡,因為恒成立,所以恒成立,即恒成立,所以,故選D.考點:三角函數(shù)二倍角公式、降次公式;7、C【解題分析】函數(shù)中,因為所以.有.故選C.8、B【解題分析】根據(jù)函數(shù)的奇偶性定義判斷為奇函數(shù)可得對稱性,化簡解析式,根據(jù)指數(shù)函數(shù)的性質(zhì)可得單調(diào)性和值域.【題目詳解】因為的定義域為,,即函數(shù)為奇函數(shù),所以函數(shù)的圖象關(guān)于原點對稱,即①正確,②不正確;因為,由于單調(diào)遞減,所以單調(diào)遞增,故④錯誤;因為,所以,,即函數(shù)的值域為,故③正確,即正確的個數(shù)為2個,故選:B.【題目點撥】關(guān)鍵點點睛:理解函數(shù)的奇偶性和常見函數(shù)單調(diào)性簡單的判斷方式.9、B【解題分析】根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系,即可得到結(jié)論.【題目詳解】根據(jù)函數(shù)奇偶性和單調(diào)性,A,(0,+∞)上是單調(diào)遞減,錯誤B,偶函數(shù),(0,+∞)上是遞增,正確.C,奇函數(shù),錯誤,D,x>0時,(0,+∞)上是函數(shù)遞減,錯誤,故選:B.【題目點撥】根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵10、B【解題分析】根據(jù)函數(shù)圖像易得,,求得,再將點代入即可求得得值.【題目詳解】解:由圖可知,,則,所以,所以,將代入得,所以,又,所以.故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】根據(jù)給定條件利用奇函數(shù)的定義計算作答.【題目詳解】因函數(shù)是奇函數(shù),其定義域為R,則對,,即,整理得:,而不恒為0,于得,所以實數(shù).故答案為:12、【解題分析】由題意可得:點睛:熟記同角三角函數(shù)關(guān)系式及誘導(dǎo)公式,特別是要注意公式中的符號問題;注意公式的變形應(yīng)用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.這是解題中常用到的變形,也是解決問題時簡化解題過程的關(guān)鍵所在13、①.25②.4【解題分析】根據(jù)條件所給的莖葉圖看出分?jǐn)?shù)在[50,60)之間的頻數(shù),由頻率分布直方圖看出分?jǐn)?shù)在[50,60)之間的頻率和[90,100)之間的頻率一樣,繼而得到參加測試的總?cè)藬?shù)及分?jǐn)?shù)在[80,90)之間的人數(shù).【題目詳解】成績在[50,60)內(nèi)的頻數(shù)為2,由頻率分布直方圖可以看出,成績在[90,100]內(nèi)同樣有2人,由,解得n=25,成績在[80,90)之間的人數(shù)為25-(2+7+10+2)=4人,所以參加測試人數(shù)n=25,分?jǐn)?shù)在[80,90)的人數(shù)為4人.故答案為:25;4【題目點撥】本題主要考查莖葉圖、頻率分布直方圖,樣本的頻率分布估計總體的分布,屬于容易題.14、100【解題分析】分析得出得解.【題目詳解】∴故答案為:100【題目點撥】由函數(shù)解析式得到是定值是解題關(guān)鍵.15、【解題分析】由題意,∴A(3,2)是⊙C上一點,折疊該圓兩次使點A分別與圓上不相同的兩點(異于點A)重合,兩次的折痕方程分別為x﹣y+1=0和x+y﹣7=0,∴圓上不相同的兩點為B(1,4),D(5,4),∵A(3,2),BA⊥DA∴BD的中點為圓心C(3,4),半徑為1,∴⊙C的方程為(x﹣3)2+(y﹣4)2=4過P,M,N的圓的方程為x2+y2=m2,∴兩圓外切時,m的最大值為,兩圓內(nèi)切時,m的最小值為,故答案為[3,7]16、【解題分析】根據(jù)一元二次不等式與二次函數(shù)的關(guān)系,可知只需判別式,利用所得不等式求得結(jié)果.【題目詳解】不等式對一切實數(shù)x恒成立,,解得:故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)4人【解題分析】(1)根據(jù)頻率和為1,求出的值;(2)根據(jù)頻率分布直方圖,計算平均數(shù)即可(3)根據(jù)分層抽樣方法特點,計算出總?cè)藬?shù)以及應(yīng)抽取的人數(shù)比即可;【小問1詳解】解:因為直方圖中的各個矩形的面積之和為1,所以有,解得;【小問2詳解】解:根據(jù)頻率分布直方圖,計算平均數(shù)為【小問3詳解】解:由直方圖知,三個區(qū)域內(nèi)的學(xué)生總數(shù)為人,其中身高在內(nèi)的學(xué)生人數(shù)為人,所以從身高在范圍內(nèi)抽取的學(xué)生人數(shù)為人;18、【解題分析】利用三角函數(shù)恒等變換的應(yīng)用化簡函數(shù)解析式為,利用余弦函數(shù)的周期公式即可計算得解【題目詳解】先證明出,.因為,同理可證.,,因此,原函數(shù)的最小正周期【題目點撥】關(guān)鍵點點睛:本題考查余弦型函數(shù)最小正周期的求解,求解的關(guān)鍵就是利用三角恒等變換思想化簡函數(shù)解析式,本題中用到了積化和差公式,,在解題時應(yīng)先給與證明.19、(1)(2)函數(shù)為定義域上的偶函數(shù),證明見解析【解題分析】(1)由題意可得,解不等式即可求出結(jié)果;(2)令,證得,根據(jù)偶函數(shù)的定義即可得出結(jié)論.【小問1詳解】由,則有,得.則函數(shù)的定義域為【小問2詳解】函數(shù)為定義域上的偶函數(shù)令,則,又則,有成立則函數(shù)為在定義域上的偶函數(shù)20、(1);(2)最大值為,此
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 贛南科技學(xué)院《計算機(jī)網(wǎng)絡(luò)安全》2023-2024學(xué)年第一學(xué)期期末試卷
- 2022年三年級下冊小學(xué)生期末評語(17篇)
- 七年級語文上冊第四單元寫作思路要清晰新人教版
- 三年級數(shù)學(xué)上冊一混合運算過河說課稿北師大版
- 三年級科學(xué)下冊第一單元植物的生長變化第3課我們先看到了根教學(xué)材料教科版
- 小學(xué)生宿舍內(nèi)務(wù)管理制度
- 死因制度培訓(xùn)課件
- 2021年衛(wèi)生招聘(公共衛(wèi)生管理)考試題庫(帶答案)
- 醫(yī)生輸血培訓(xùn)課件
- 同軸電纜接頭制作(最終版)
- 重慶市渝中區(qū)2023-2024學(xué)年八年級上學(xué)期期末考試數(shù)學(xué)試題含答案及解析
- 水族館改造合同
- 湖南省益陽市2022-2023學(xué)年高三上學(xué)期數(shù)學(xué)期末試卷
- 【MOOC】教學(xué)研究的數(shù)據(jù)處理與工具應(yīng)用-愛課程 中國大學(xué)慕課MOOC答案
- 《小學(xué)科學(xué)實驗創(chuàng)新》課件
- 拌合站安全事故案例
- 2024年手術(shù)室護(hù)士年度工作計劃(4篇)
- 《紅色家書》讀書分享會主題班會課件
- 2025年廣東省春季高考數(shù)學(xué)仿真模擬試卷試題(含答案解析+答題卡)
- 新媒體運營工作年終總結(jié)
- 財務(wù)管理基礎(chǔ)規(guī)范操作手冊
評論
0/150
提交評論