![山東省新泰第一中學(xué)北校2024屆高一數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第1頁](http://file4.renrendoc.com/view/ea1af1ce43b734ef97cd604e8e7142de/ea1af1ce43b734ef97cd604e8e7142de1.gif)
![山東省新泰第一中學(xué)北校2024屆高一數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第2頁](http://file4.renrendoc.com/view/ea1af1ce43b734ef97cd604e8e7142de/ea1af1ce43b734ef97cd604e8e7142de2.gif)
![山東省新泰第一中學(xué)北校2024屆高一數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第3頁](http://file4.renrendoc.com/view/ea1af1ce43b734ef97cd604e8e7142de/ea1af1ce43b734ef97cd604e8e7142de3.gif)
![山東省新泰第一中學(xué)北校2024屆高一數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第4頁](http://file4.renrendoc.com/view/ea1af1ce43b734ef97cd604e8e7142de/ea1af1ce43b734ef97cd604e8e7142de4.gif)
![山東省新泰第一中學(xué)北校2024屆高一數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第5頁](http://file4.renrendoc.com/view/ea1af1ce43b734ef97cd604e8e7142de/ea1af1ce43b734ef97cd604e8e7142de5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省新泰第一中學(xué)北校2024屆高一數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.是邊長為1的等邊三角形,點分別是邊的中點,連接并延長到點,使得,則的值為()A. B.C. D.2.集合,,則()A. B.C. D.3.函數(shù)f(x)=lnx+3x-4的零點所在的區(qū)間為()A. B.C. D.4.我國東漢末數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用一幅“弦圖”給出了勾股定理的證明,后人稱其為“趙爽弦圖”,它是由四個全等的直角三角形與一個小正方形拼成的一個大正方形,如圖所示.在“趙爽弦圖”中,若,則()A. B.C. D.5.已知函數(shù)f(x)=log3(x+1),若f(a)=1,則a等于()A.0 B.1C.2 D.36.函數(shù)的定義域為()A.(-∞,4) B.[4,+∞)C.(-∞,4] D.(-∞,1)∪(1,4]7.已知,則等于()A. B.C. D.8.函數(shù)的零點個數(shù)為(
)A.1 B.2C.3 D.49.已知函數(shù),則的值是A.-24 B.-15C.-6 D.1210.下列函數(shù)中,既是偶函數(shù),又是(0,+∞)上的減函數(shù)的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),,若對任意的,都存在,使得,則實數(shù)的取值范圍為_________.12.用表示函數(shù)在閉區(qū)間上的最大值.若正數(shù)滿足,則的最大值為__________13.方程的解在內(nèi),則的取值范圍是___________.14.已知函數(shù)(1)當時,求的值域;(2)若,且,求的值;15.設(shè)函數(shù),若關(guān)于的不等式的解集為,則__________16.已知函數(shù)集合,若集合中有3個元素,則實數(shù)的取值范圍為________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知n為正整數(shù),集合Mn=x1,x2,???,xnx(1)當n=3時,設(shè)α=0,1,0,β=1,0,0,寫出α-(2)若集合S滿足S?M3,且?α,β∈S,dα,β=2,求集合(3)若α,β∈Mn,且dα,β=2,任取γ∈18.已知函數(shù)的最小正周期為,函數(shù)的最大值是,最小值是.(1)求、、的值;(2)指出的單調(diào)遞增區(qū)間.19.已知函數(shù),(Ⅰ)求的最小正周期及單調(diào)遞增區(qū)間;(Ⅱ)求在區(qū)間上的最大值和最小值20.已知是函數(shù)的零點,.(Ⅰ)求實數(shù)的值;(Ⅱ)若不等式在上恒成立,求實數(shù)的取值范圍;(Ⅲ)若方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.21.已知函數(shù)是定義在上的奇函數(shù),當時有.(1)求函數(shù)的解析式;(2)判斷函數(shù)在上的單調(diào)性,并用定義證明.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】設(shè),,∴,,,∴.【考點】向量數(shù)量積【名師點睛】研究向量的數(shù)量積問題,一般有兩個思路,一是建立直角坐標系,利用坐標研究向量數(shù)量積;二是利用一組基底表示所有向量,兩種實質(zhì)相同,坐標法更易理解和化簡.平面向量的坐標運算的引入為向量提供了新的語言——“坐標語言”,實質(zhì)是將“形”化為“數(shù)”.向量的坐標運算,使得向量的線性運算都可用坐標來進行,實現(xiàn)了向量運算完全代數(shù)化,將數(shù)與形緊密結(jié)合起來2、B【解題分析】解不等式可求得集合,由交集定義可得結(jié)果.【題目詳解】,,.故選:B.3、B【解題分析】根據(jù)函數(shù)零點的判定定理可得函數(shù)的零點所在的區(qū)間【題目詳解】解:函數(shù)在其定義域上單調(diào)遞增,(2),(1),(2)(1)根據(jù)函數(shù)零點的判定定理可得函數(shù)的零點所在的區(qū)間是,故選【題目點撥】本題考查求函數(shù)的值及函數(shù)零點的判定定理,屬于基礎(chǔ)題4、B【解題分析】由題,根據(jù)向量加減數(shù)乘運算得,進而得.【題目詳解】解:因為在“趙爽弦圖”中,若,所以,所以,所以,所以.故選:B5、C【解題分析】根據(jù),解對數(shù)方程,直接得到答案.【題目詳解】∵,∴a+1=3,∴a=2.故選:C.點睛】本題考查了解對數(shù)方程,屬于基礎(chǔ)題.6、D【解題分析】根據(jù)函數(shù)式的性質(zhì)可得,即可得定義域;【題目詳解】根據(jù)的解析式,有:解之得:且;故選:D【題目點撥】本題考查了具體函數(shù)定義域的求法,屬于簡單題;7、A【解題分析】利用換元法設(shè),則,然后利用三角函數(shù)的誘導(dǎo)公式進行化簡求解即可【題目詳解】設(shè),則,則,則,故選:8、B【解題分析】函數(shù)的定義域為,且,即函數(shù)為偶函數(shù),當時,,設(shè),則:,據(jù)此可得:,據(jù)此有:,即函數(shù)是區(qū)間上的減函數(shù),由函數(shù)的解析式可知:,則函數(shù)在區(qū)間上有一個零點,結(jié)合函數(shù)的奇偶性可得函數(shù)在R上有2個零點.本題選擇B選項.點睛:函數(shù)零點的求解與判斷方法:(1)直接求零點:令f(x)=0,如果能求出解,則有幾個解就有幾個零點(2)零點存在性定理:利用定理不僅要函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性)才能確定函數(shù)有多少個零點(3)利用圖象交點的個數(shù):將函數(shù)變形為兩個函數(shù)的差,畫兩個函數(shù)的圖象,看其交點的橫坐標有幾個不同的值,就有幾個不同的零點9、C【解題分析】∵函數(shù),∴,故選C10、D【解題分析】根據(jù)題意,依次分析選項中函數(shù)的奇偶性與單調(diào)性,綜合即可得答案.【題目詳解】解:根據(jù)題意,依次分析選項:對于,是奇函數(shù),不符合題意;對于,,是指數(shù)函數(shù),不是偶函數(shù),不符合題意;對于,,是偶函數(shù),但在上是增函數(shù),不符合題意;對于,,為開口向下的二次函數(shù),既是偶函數(shù),又是上的減函數(shù),符合題意;故選.【題目點撥】本題考查函數(shù)單調(diào)性與奇偶性的判斷,關(guān)鍵是掌握常見函數(shù)的奇偶性與單調(diào)性,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、##a≤【解題分析】時,,原問題.【題目詳解】∵,,∴,∴,即對任意的,都存在,使恒成立,∴有.當時,顯然不等式恒成立;當時,,解得;當時,,此時不成立.綜上,.故答案為:.12、【解題分析】對分類討論,利用正弦函數(shù)的圖象求出和,代入,解出的范圍,即可得解.【題目詳解】當,即時,,,因為,所以不成立;當,即時,,,不滿足;當,即時,,,由得,得,得;當,即時,,,由得,得,得,得;當,即時,,,不滿足;當,即時,,,不滿足.綜上所述:.所以得最大值為故答案為:【題目點撥】關(guān)鍵點點睛:對分類討論,利用正弦函數(shù)的圖象求出和是解題關(guān)鍵.13、【解題分析】先令,按照單調(diào)性求出函數(shù)的值域,寫出的取值范圍即可.【題目詳解】令,顯然該函數(shù)增函數(shù),,值域為,故.故答案為:.14、(1)(2)【解題分析】(1)化簡函數(shù)解析式為,再利用余弦函數(shù)的性質(zhì)求函數(shù)的值域即可;(2)由已知得,利用同角之間的關(guān)系求得,再利用湊角公式及兩角差的余弦公式即可得解.【小問1詳解】,,利用余弦函數(shù)的性質(zhì)知,則【小問2詳解】,又,,則則15、【解題分析】根據(jù)不等式的解集可得、、為對應(yīng)方程的根,分析兩個不等式對應(yīng)方程的根,即可得解.【題目詳解】由于滿足,即,可得,所以,,所以,方程的兩根分別為、,而可化為,即,所以,方程的兩根分別為、,,且不等式解集為,所以,,解得,則,因此,.故答案為:.【題目點撥】關(guān)鍵點點睛:本題主要考查一元二次不等式與方程之間的關(guān)系,即不等式解集的端點即為對應(yīng)方程的根,本題在理解、、分別為方程、的根,而兩方程含有公共根,進而可得出關(guān)于實數(shù)的等式,即可求解.16、或【解題分析】令,記的兩根為,由題知的圖象與直線共有三個交點,從而轉(zhuǎn)化為一元二次方程根的分布問題,然后可解.【題目詳解】令,記的零點為,因為集合中有3個元素,所以的圖象與直線共有三個交點,則,或或當時,得,,滿足題意;當時,得,,滿足題意;當時,,解得.綜上,t的取值范圍為或.故答案為:或三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)α-β=1,1,0(2)最大值是4,此時S=0,0,0,(3)2【解題分析】(1)根據(jù)定義直接求解即可;(2)根據(jù)定義,結(jié)合反證法進行求解即可;(3)根據(jù)定義,結(jié)合絕對值的性質(zhì)進行證明即可.【小問1詳解】α-β=1,1,0,【小問2詳解】最大值是4.此時S=0,0,0,若還有第5個元素,則必有1,0,0,0,1,1和0,0,1,1,1,0和0,1,0,1,0,1和1,1【小問3詳解】證明:設(shè)α=a1,a2所以ai,bi,ci∈0,1從而α-β=a又dα-γ,β-γ當ci=0時,當ci=1時,所以dα-γ,α-β所以dα-γ,α-β【題目點撥】關(guān)鍵點睛:運用分類討論法、反證法是解題的關(guān)鍵.18、(1)(2)【解題分析】(1)由可得的值,根據(jù)正弦函數(shù)可得最值,再根據(jù)最值對應(yīng)關(guān)系可得方程組,解得、的值;(2)根據(jù)正弦函數(shù)單調(diào)性可得不等式,解不等式可得函數(shù)單調(diào)區(qū)間.試題解析:(1)由函數(shù)最小正周期為,得,∴.又的最大值是,最小值是,則解得(2)由(1)知,,當,即時,單調(diào)遞增,∴的單調(diào)遞增區(qū)間為.點睛:已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點法”中相對應(yīng)的特殊點求.19、(Ⅰ)最小正周期是,單調(diào)遞增區(qū)間是.(Ⅱ)最大值為,最小值為【解題分析】詳解】試題分析:(Ⅰ)將函數(shù)解析式化為,可得最小正周期為;將代入正弦函數(shù)的增區(qū)間可得函數(shù)的單調(diào)遞增區(qū)間是.(Ⅱ)由可得,故,從而可得函數(shù)在區(qū)間上的最大值為,最小值為試題解析:(Ⅰ),所以函數(shù)的最小正周期是,由,得,所以的單調(diào)遞增區(qū)間是.(Ⅱ)當時,,所以,所以,所以在區(qū)間上的最大值為,最小值為點睛:解決三角函數(shù)綜合題(1)將f(x)化為的形式;(2)構(gòu)造;(3)逆用和(差)角公式得到(其中φ為輔助角);(4)利用,將看做一個整體,并結(jié)合函數(shù)的有關(guān)知識研究三角函數(shù)的性質(zhì)20、(Ⅰ)1;(Ⅱ);(Ⅲ)【解題分析】Ⅰ利用是函數(shù)的零點,代入解析式即可求實數(shù)的值;Ⅱ由不等式在上恒成立,利用參數(shù)分類法,轉(zhuǎn)化為二次函數(shù)求最值問題,即可求實數(shù)的取值范圍;Ⅲ原方程等價于,利用換元法,轉(zhuǎn)化為一元二次方程根的個數(shù)進行求解即可【題目詳解】Ⅰ是函數(shù)的零點,,得;Ⅱ,,則不等式在上恒成立,等價為,,同時除以,得,令,則,,,故的最小值為0,則,即實數(shù)k的取值范圍;Ⅲ原方程等價為,,兩邊同乘以得,此方程有三個不同的實數(shù)解,令,則,則,得或,當時,,得,當,要使方程有三個不同的實數(shù)解,則必須有有兩個解,則,得【題目點撥】本題主要考查函數(shù)與方程根的問題,利用換元法結(jié)合一元二次方程根的個數(shù),以及不等式恒成立問題,屬于難題.不等式恒成立問題常見方法:①分離參數(shù)恒成立(即可)或恒成立(即可);②數(shù)形結(jié)合(圖象在上方即可);③討論最值或恒成立;④討論參數(shù),排除不合題意的參數(shù)范圍,篩選出符合題意的參數(shù)范圍.21、(1);(2)見解析.【解題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國主備自動切換C波段收發(fā)信機市場調(diào)查研究報告
- 2025年豆芽項目可行性研究報告
- 2025年肥料定氮儀項目可行性研究報告
- 2025年硅膠真空袋材料項目可行性研究報告
- 2025年毛混紡產(chǎn)品項目可行性研究報告
- 2025年無水碘化鈉項目可行性研究報告
- 2025至2031年中國多功能壓力校驗儀行業(yè)投資前景及策略咨詢研究報告
- 2025年圓頭六角重型鏈條鎖項目可行性研究報告
- 2025年半不銹鋼母嬰一體床項目可行性研究報告
- 2025至2031年中國ARA油行業(yè)投資前景及策略咨詢研究報告
- 公共服務(wù)均等化研究-第2篇-深度研究
- 西安經(jīng)濟技術(shù)開發(fā)區(qū)管委會招聘筆試真題2024
- 2025屆浙江省高三歷史選考總復(fù)習(xí)模擬測試(八)歷史試題(含答案)
- 二零二五年度港口碼頭安全承包服務(wù)協(xié)議4篇
- 廣州2025年第一次廣東廣州市白云區(qū)政務(wù)服務(wù)和數(shù)據(jù)管理局政府雇員招聘筆試歷年參考題庫附帶答案詳解
- 2025年四川中煙工業(yè)有限責任公司招聘筆試參考題庫含答案解析
- 【市質(zhì)檢】泉州市2025屆高中畢業(yè)班質(zhì)量監(jiān)測(二) 生物試卷(含答案解析)
- 六年級2025寒假特色作業(yè)
- DCS-應(yīng)急預(yù)案演練方案
- 2025年江蘇轄區(qū)農(nóng)村商業(yè)銀行招聘筆試參考題庫含答案解析
- 2025年中華財險湖南分公司招聘筆試參考題庫含答案解析
評論
0/150
提交評論