中級微觀濟學課件尼科爾森ch15_第1頁
中級微觀濟學課件尼科爾森ch15_第2頁
中級微觀濟學課件尼科爾森ch15_第3頁
中級微觀濟學課件尼科爾森ch15_第4頁
中級微觀濟學課件尼科爾森ch15_第5頁
已閱讀5頁,還剩106頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

柯孔林浙江工商大學金融學院1Chapter15GAMETHEORYMODELSOFPRICING柯孔林浙江工商大學金融學院2GameTheoryGametheoryinvolvesthestudyofstrategicsituationsGametheorymodelsattempttoportraycomplexstrategicsituationsinahighlysimplifiedandstylizedsettingabstractfrompersonalandinstitutionaldetailsinordertoarriveatarepresentationofthesituationthatismathematicallytractable柯孔林浙江工商大學金融學院3GameTheoryAllgameshavethreeelementsplayersstrategiespayoffsGamesmaybecooperativeornoncooperative柯孔林浙江工商大學金融學院4PlayersEachdecision-makerinagameiscalledaplayercanbeanindividual,afirm,anentirenationEachplayerhastheabilitytochooseamongasetofpossibleactionsThespecificidentityoftheplayersisirrelevantno“goodguys”or“badguys”柯孔林浙江工商大學金融學院5StrategiesEachcourseofactionopentoaplayeriscalledastrategyStrategiescanbeverysimpleorverycomplexeachisassumedtobewell-definedInnoncooperativegames,playersareuncertainaboutthestrategiesusedbyotherplayers柯孔林浙江工商大學金融學院6PayoffsThefinalreturnstotheplayersattheendofthegamearecalledpayoffsPayoffsareusuallymeasuredintermsofutilitymonetarypayoffsarealsousedItisassumedthatplayerscanrankthepayoffsassociatedwithagame柯孔林浙江工商大學金融學院7NotationWewilldenoteagameGbetweentwoplayers(AandB)byG[SA,SB,UA(a,b),UB(a,b)]whereSA=strategiesavailableforplayerA(a

SA)SB=strategiesavailableforplayerB(b

SB)UA=utilityobtainedbyplayerAwhenparticularstrategiesarechosenUB=utilityobtainedbyplayerBwhenparticularstrategiesarechosen柯孔林浙江工商大學金融學院8NashEquilibriuminGamesAtmarketequilibrium,noparticipanthasanincentivetochangehisbehaviorIngames,apairofstrategies(a*,b*)isdefinedtobeaNashequilibriumifa*isplayerA’sbeststrategywhenplayerBplaysb*,andb*isplayerB’sbeststrategywhenplayerAplaysa*柯孔林浙江工商大學金融學院9NashEquilibriuminGamesApairofstrategies(a*,b*)isdefinedtobeaNashequilibriumifUA(a*,b*)

UA(a’,b*)foralla’

SAUB(a*,b*)

Ub(a*,b’)forallb’

SB柯孔林浙江工商大學金融學院10NashEquilibriuminGamesIfoneoftheplayersrevealstheequilibriumstrategyhewilluse,theotherplayercannotbenefitthisisnotthecasewithnonequilibriumstrategiesNoteverygamehasaNashequilibriumpairofstrategiesSomegamesmayhavemultipleequilibria柯孔林浙江工商大學金融學院11ADormitoryGameSupposethattherearetwostudentswhomustdecidehowloudlytoplaytheirstereosinadormeachmaychoosetoplayitloudly(L)orsoftly(S)柯孔林浙江工商大學金融學院12ADormitoryGameALSAchoosesloud(L)orsoft(S)BBLSLSBmakesasimilarchoice7,55,46,46,3PayoffsareintermsofA’sutilitylevelandB’sutilitylevelNeitherplayerknowstheother’sstrategy柯孔林浙江工商大學金融學院13ADormitoryGameSometimesitismoreconvenienttodescribegamesintabular(“normal”)form柯孔林浙江工商大學金融學院14ADormitoryGameAloud-playstrategyisadominantstrategyforplayerBtheLstrategyprovidesgreaterutilitytoBthandoestheSstrategynomatterwhatstrategyAchoosesPlayerAwillrecognizethatBhassuchadominantstrategyAwillchoosethestrategythatdoesthebestagainstB’schoiceofL柯孔林浙江工商大學金融學院15ADormitoryGameThismeansthatAwillalsochoosetoplaymusicloudlyTheA:L,B:LstrategychoiceobeysthecriterionforaNashequilibriumbecauseLisadominantstrategyforB,itisthebestchoicenomatterwhatAdoesifAknowsthatBwillfollowhisbeststrategy,thenListhebestchoiceforA柯孔林浙江工商大學金融學院16ExistenceofNashEquilibriaANashequilibriumisnotalwayspresentintwo-persongamesThismeansthatonemustexplorethedetailsofeachgamesituationtodeterminewhethersuchanequilibrium(ormultipleequilibria)exists柯孔林浙江工商大學金融學院17NoNashEquilibriaAnystrategyisunstablebecauseitofferstheotherplayersanincentivetoadoptanotherstrategy柯孔林浙江工商大學金融學院18TwoNashEquilibriaBothofthejointvacationsrepresentNashequilibria柯孔林浙江工商大學金融學院19ExistenceofNashEquilibriaTherearecertaintypesoftwo-persongamesinwhichaNashequilibriummustexistgamesinwhichtheparticipantshavealargenumberofstrategiesgamesinwhichthestrategieschosenbyAandBarealternatelevelsofasinglecontinuousvariablegameswhereplayersusemixedstrategies柯孔林浙江工商大學金融學院20ExistenceofNashEquilibriaInagamewhereplayersarepermittedtousemixedstrategies,eachplayermayplaythepurestrategieswithcertain,pre-selectedprobabilitiesplayerAmayflipacointodeterminewhethertoplaymusicloudlyorsoftlythepossibilityofplayingthepurestrategieswithanyprobabilitiesaplayermaychoose,convertsthegameintoonewithaninfinitenumberofmixedstrategies柯孔林浙江工商大學金融學院21ThePrisoners’DilemmaThemostfamoustwo-persongamewithanundesirableNashequilibriume柯孔林浙江工商大學金融學院22ThePrisoners’DilemmaAnironcladagreementbybothprisonersnottoconfesswillgivethemthelowestamountofjointjailtimethissolutionisnotstableThe“confess”strategydominatesforbothAandBthesestrategiesconstituteaNashequilibrium柯孔林浙江工商大學金融學院23TheTragedyoftheCommonThisexampleisusedtosignifytheenvironmentalproblemsofoverusethatoccurwhenscarceresourcesaretreatedas“commonproperty”Assumethattwoherdersaredecidinghowmanyoftheiryakstheyshouldletgrazeonthevillagecommonproblem:thecommonissmallandcanrapidlyeovergrazed柯孔林浙江工商大學金融學院24TheTragedyoftheCommonSupposethattheperyakvalueofgrazingonthecommonisV(YA,YB)=200–(YA+YB)2whereYAandYB=numberofyaksofeachherderNotethatbothVi<0andVii<0anextrayakreducesVandthismarginaleffectincreaseswithadditionalgrazing柯孔林浙江工商大學金融學院25TheTragedyoftheCommonSolvingherderA’svaluemaximizationproblem:MaxYAV=Max[200YA–YA(YA+YB)2]Thefirst-orderconditionis200–2YA2–2YAYB–YA2–2YAYB–YB2=200–3YA2–4YAYB–YB2=0Similarly,forBtheoptimalstrategyis200–3YB2–4YBYA–YA2=0柯孔林浙江工商大學金融學院26TheTragedyoftheCommonForaNashequilibrium,thevaluesforYAandYBmustsolvebothoftheseconditionsUsingthesymmetryconditionYA=YB200=8YA2=8YB2YA=YB=5Eachherderwillobtain500[=5·(200-102)]inreturnGiventhischoice,neitherherderhasanincentivetochangehisbehavior柯孔林浙江工商大學金融學院27TheTragedyoftheCommonTheNashequilibriumisnotthebestuseofthecommonYA=YB=4providesgreaterreturntoeachherder[4·(200–82)=544]ButYA=YB=4isnotastableequilibriumifAannouncesthatYA=4,BwillhaveanincentivetoincreaseYBthereisanincentivetocheat柯孔林浙江工商大學金融學院28CooperationandRepetitionCooperationamongplayerscanresultinesthatarepreferredtotheNashebybothplayersthecooperativeeisunstablebecauseitisnotaNashequilibriumRepeatedplaymayfostercooperation柯孔林浙江工商大學金融學院29ATwo-PeriodDormitoryGameLet’sassumethatAchooseshisdecibellevelfirstandthenBmakeshischoiceIneffect,thatmeansthatthegamehaseatwo-periodgameB’sstrategicchoicesmusttakeintoaccounttheinformationavailableatthestartofperiodtwo柯孔林浙江工商大學金融學院30ATwo-PeriodDormitoryGameALSAchoosesloud(L)orsoft(S)BBLSLSBmakesasimilarchoiceknowingA’schoice7,55,46,46,3Thus,weshouldputB’sstrategiesinaformthattakestheinformationonA’schoiceintoaccount柯孔林浙江工商大學金融學院31ATwo-PeriodDormitoryGameB’sStrategiesL,LL,SS,LS,SA’sStrategiesL7,57,55,45,4S6,46,36,46,3EachstrategyisstatedasapairofactionsshowingwhatBwilldodependingonA’sactions柯孔林浙江工商大學金融學院32ATwo-PeriodDormitoryGameB’sStrategiesL,LL,SS,LS,SA’sStrategiesL7,57,55,45,4S6,46,36,46,3Thereare3NashequilibriainthisgameA:L,B:(L,L)A:L,B:(L,S)A:S,B:(S,L)柯孔林浙江工商大學金融學院33ATwo-PeriodDormitoryGameB’sStrategiesL,LL,SS,LS,SA’sStrategiesL7,57,55,45,4S6,46,36,46,3A:L,B:(L,S)andA:S,B:(S,L)areimplausibleeachincorporatesanoncrediblethreatonthepartofB柯孔林浙江工商大學金融學院34ATwo-PeriodDormitoryGameThus,thegameisreducedtotheoriginalpayoffmatrixwhere(L,L)isadominantstrategyforBAwillrecognizethisandwillalwayschooseLThisisasubgameperfectequilibriumaNashequilibriuminwhichthestrategychoicesofeachplayerdonotinvolvenoncrediblethreats柯孔林浙江工商大學金融學院35SubgamePerfectEquilibriumA“subgame”istheportionofalargergamethatbeginsatonedecisionnodeandincludesallfutureactionsstemmingfromthatnodeToqualifytobeasubgameperfectequilibrium,astrategymustbeaNashequilibriumineachsubgameofalargergame柯孔林浙江工商大學金融學院36RepeatedGamesManyeconomicsituationscanbemodeledasgamesthatareplayedrepeatedlyconsumers’regularpurchasesfromaparticularretailerfirms’day-to-daycompetitionforcustomersworkers’attemptstooutwittheirsupervisors柯孔林浙江工商大學金融學院37RepeatedGamesAnimportantaspectofarepeatedgameistheexpandedstrategysetsthateavailabletotheplayersopensthewayforcrediblethreatsandsubgameperfection柯孔林浙江工商大學金融學院38RepeatedGamesThenumberofrepetitionsisalsoimportantingameswithafixed,finitenumberofrepetitions,thereislittleroomforthedevelopmentofinnovativestrategiesgamesthatareplayedaninfinitenumberoftimesofferamuchwiderarrayofoptions柯孔林浙江工商大學金融學院39Prisoners’DilemmaFiniteGameB’sStrategiesLRA’sStrategiesU1,13,0D0,32,2Ifthegamewasplayedonlyonce,theNashequilibriumA:U,B:Lwouldbetheexpectede柯孔林浙江工商大學金融學院40Prisoners’DilemmaFiniteGameB’sStrategiesLRA’sStrategiesU1,13,0D0,32,2ThiseisinferiortoA:D,B:Rforeachplayer柯孔林浙江工商大學金融學院41Prisoners’DilemmaFiniteGameSupposethisgameistoberepeatedlyplayedforafinitenumberofperiods(T)AnyexpandedstrategyinwhichApromisestoplayDinthefinalperiodisnotcrediblewhenTarrives,AwillchoosestrategyUThesamelogicappliestoplayerB柯孔林浙江工商大學金融學院42Prisoners’DilemmaFiniteGameAnysubgameperfectequilibriumforthisgamecanonlyconsistoftheNashequilibriumstrategiesinthefinalroundA:U,B:LThelogicthatappliestoperiodTalsoappliestoperiodT-1TheonlysubgameperfectequilibriuminthisfinitegameistorequiretheNashequilibriumineveryround柯孔林浙江工商大學金融學院43GamewithInfiniteRepetitionsInthiscase,eachplayercanannouncea“triggerstrategy”promisetoplaythecooperativestrategyaslongastheotherplayerdoeswhenoneplayerdeviatesfromthepattern,thegamerevertstotherepeatingsingle-periodNashequilibrium柯孔林浙江工商大學金融學院44GamewithInfiniteRepetitionsWhetherthetwintriggerstrategyrepresentsasubgameperfectequilibriumdependsonwhetherthepromisetoplaycooperativelyiscredibleSupposethatAannouncesthathewillcontinuetoplaythetriggerstrategybyplayingcooperativelyinperiodK柯孔林浙江工商大學金融學院45GamewithInfiniteRepetitionsIfBdecidestoplaycooperatively,payoffsof2canbeexpectedtocontinueindefinitelyIfBdecidestocheat,thepayoffinperiodKwillbe3,butwillfallto1inallfutureperiodstheNashequilibriumwillreassertitself柯孔林浙江工商大學金融學院46GamewithInfiniteRepetitionsIf

isplayerB’sdiscountrate,thepresentvalueofcontinuedcooperationis2+2+22+…=2/(1-)Thepayofffromcheatingis3+1+21+…=3+1/(1-)Continuedcooperationwillbecredibleif2/(1-)>3+1/(1-)>?柯孔林浙江工商大學金融學院47TheTragedyoftheCommonRevisitedTheovergrazingofyaksonthevillagecommonmaynotpersistinaninfinitelyrepeatedgameAssumethateachherderhasonlytwostrategiesavailablebringing4or5yakstothecommonTheNashequilibrium(A:5,B:5)isinferiortothecooperativee(A:4,B:4)柯孔林浙江工商大學金融學院48TheTragedyoftheCommonRevisitedWithaninfinitenumberofrepetitions,bothplayerswouldfinditattractivetoadoptcooperativetriggerstrategiesif544/(1-)>595+500(1-)>551/595=0.93柯孔林浙江工商大學金融學院49PricinginStaticGamesSupposethereareonlytwofirms(AandB)producingthesamegoodataconstantmarginalcost(c)thestrategiesforeachfirmconsistofchoosingprices(PA

andPB)subjectonlytotheconditionthatthefirm’spricemustexceedcPayoffsinthegamewillbedeterminedbydemandconditions柯孔林浙江工商大學金融學院50PricinginStaticGamesBecauseoutputishomogeneousandmarginalcostsareconstant,thefirmwiththelowerpricewillgaintheentiremarketIfPA=PB,wewillassumethatthefirmswillsharethemarketequally柯孔林浙江工商大學金融學院51PricinginStaticGamesInthismodel,theonlyNashequilibriumisPA=PB=ciffirmAchoosesapricegreaterthanc,theprofit-maximizingresponseforfirmBistochooseapriceslightlylowerthanPAandcornertheentiremarketbutB’sprice(ifitexceedsc)cannotbeaNashequilibriumbecauseitprovidesfirmAwithincentiveforfurtherpricecutting柯孔林浙江工商大學金融學院52PricinginStaticGamesTherefore,onlybychoosingPA=PB=cwillthetwofirmshaveachievedaNashequilibriumweendupwithacompetitivesolutioneventhoughthereareonlytwofirmsThispricingstrategyissometimesreferredtoasaBertrandequilibrium柯孔林浙江工商大學金融學院53PricinginStaticGamesTheBertrandresultdependscruciallyontheassumptionsunderlyingthemodeliffirmsdonothaveequalcostsorifthegoodsproducedbythetwofirmsarenotperfectsubstitutes,thecompetitiveresultnolongerholds柯孔林浙江工商大學金融學院54PricinginStaticGamesOtherduopolymodelsthatdepartfromtheBertrandresulttreatpricecompetitionasonlythefinalstageofatwo-stagegameinwhichthefirststageinvolvesvarioustypesofentryorinvestmentconsiderationsforthefirms柯孔林浙江工商大學金融學院55PricinginStaticGamesConsiderthecaseoftwoownersofnaturalspringswhoaredecidinghowmuchwatertosupplyAssumethateachfirmmustchooseacertaincapacityoutputlevelmarginalcostsareconstantuptothatlevelandinfinitethereafter柯孔林浙江工商大學金融學院56PricinginStaticGamesAtwo-stagegamewherefirmschoosecapacityfirst(andthenprice)isformallyidenticaltotheCournotanalysisthequantitieschosenintheCournotequilibriumrepresentaNashequilibriumeachfirmcorrectlyperceiveswhattheother’soutputwillbeoncethecapacitydecisionsaremade,theonlypricethatcanprevailisthatforwhichquantitydemandedisequaltototalcapacity柯孔林浙江工商大學金融學院57PricinginStaticGamesSupposethatcapacitiesaregivenbyqA’andqB’andthatP’=D

-1(qA’+qB’)whereD-1istheinversedemandfunctionAsituationinwhichPA=PB<P’isnotaNashequilibriumtotalquantitydemanded>totalcapacitysoonefirmcouldincreaseitsprofitsbyraisingitspriceandstillsellitscapacity柯孔林浙江工商大學金融學院58PricinginStaticGamesLikewise,asituationinwhichPA=PB>P’isnotaNashequilibriumtotalquantitydemanded<totalcapacitysoatleastonefirmissellinglessthanitscapacitybycuttingprice,thisfirmcouldincreaseitsprofitsbytakingallpossiblesalesuptoitscapacitytheotherfirmwouldenduploweringitspriceaswell柯孔林浙江工商大學金融學院59PricinginStaticGamesTheonlyNashequilibriumthatwillprevailisPA=PB=P’thispricewillfallshortofthemonopolypricebutwillexceedmarginalcostTheresultsofthistwo-stagegameareindistinguishablefromtheCournotmodel柯孔林浙江工商大學金融學院60PricinginStaticGamesTheBertrandmodelpredictscompetitiveesinaduopolysituationTheCournotmodelpredictsmonopoly-likeinefficienciesThissuggeststhatactualbehaviorinduopolymarketsmayexhibitawidevarietyofesdependingonthewayinwhichcompetitionoccurs柯孔林浙江工商大學金融學院61RepeatedGamesandTacitCollusionPlayersininfinitelyrepeatedgamesmaybeabletoadoptsubgame-perfectNashequilibriumstrategiesthatyieldbetteresthansimplyrepeatingalessfavorableNashequilibriumindefinitelydothefirmsinaduopolyhavetoenduretheBertrandequilibriumforever?cantheyachievemoreprofitableesthroughtacitcollusion?柯孔林浙江工商大學金融學院62RepeatedGamesandTacitCollusionWithanyfinitenumberofreplications,theBertrandresultwillremainunchangedanystrategyinwhichfirmAchoosesPA>cinperiodT(thefinalperiod)offersBtheoptionofchoosingPA>PB>cA’sthreattochargePA

inperiodTisnoncredibleasimilarargumentappliestoanyperiodpriortoT柯孔林浙江工商大學金融學院63RepeatedGamesandTacitCollusionIfthepricinggameisrepeatedoverinfinitelymanyperiods,twin“trigger”strategiesefeasibleeachfirmsetsitspriceequaltothemonopolyprice(PM)providingtheotherfirmdidthesameinthepriorperiodiftheotherfirm“cheated”inthepriorperiod,thefirmwilloptforcompetitivepricinginallfutureperiods柯孔林浙江工商大學金融學院64RepeatedGamesandTacitCollusionSupposethat,afterthepricinggamehasbeenproceedingforseveralperiods,firmBisconsideringcheatingbychoosingPB<PA

=PMitcanobtainalmostallofthesingleperiodmonopolyprofits(

M)柯孔林浙江工商大學金融學院65RepeatedGamesandTacitCollusionIffirmBcontinuestocolludetacitlywithA,itwillearnitsshareoftheprofitstream(M+M+2

M+…+n

M+…)/2=(M/2)[1/(1-)]

whereisthediscountfactorappliedtofutureprofits柯孔林浙江工商大學金融學院66RepeatedGamesandTacitCollusionCheatingwillbeunprofitableif

M<(M/2)[1/(1-)]

orif>1/2Providingthatfirmsarenottooimpatient,thetriggerstrategiesrepresentasubgameperfectNashequilibriumoftacitcollusion柯孔林浙江工商大學金融學院67TacitCollusionSupposeonlytwofirmsproducesteelbarsforjailhousewindowsBarsareproducedataconstantACandMCof$10andthedemandforbarsisQ=5,000-100PUnderBertrandcompetition,eachfirmwillchargeapriceof$10andatotalof4,000barswillbesold柯孔林浙江工商大學金融學院68TacitCollusionThemonopolypriceinthismarketis$30eachfirmhasanincentivetocolludetotalmonopolyprofitswillbe$40,000eachperiod(eachfirmwillreceive$20,000)anyonefirmwillconsideranext-periodpricecutonlyif$40,000>$20,000(1/1-)willhavetobefairlyhighforthistooccur柯孔林浙江工商大學金融學院69TacitCollusionTheviabilityofatriggerpricestrategymaydependonthenumberoffirmssupposethereare8producerstotalmonopolyprofitswillbe$40,000eachperiod(eachfirmwillreceive$5,000)anyonefirmwillconsideranext-periodpricecutif$40,000>$5,000(1/1-)thisislikelyatreasonablelevelsof柯孔林浙江工商大學金融學院70GeneralizationsandLimitationsTheviabilityoftacitcollusioningametheorymodelsisverysensitivetotheassumptionsmadeWeassumedthat:firmBcaneasilydetectthatfirmAhascheatedfirmBrespondstocheatingbyadoptingaharshresponsethatnotonlypunishesA,butalsocondemnsBtozeroprofitsforever柯孔林浙江工商大學金融學院71GeneralizationsandLimitationsInmoregeneralmodelsoftacitcollusion,theseassumptionscanberelaxeddifficultyinmonitoringotherfirm’sbehaviorotherformsofpunishmentdifferentiatedproducts柯孔林浙江工商大學金融學院72Entry,Exit,andStrategyInpreviousmodels,wehaveassumedthatentryandexitaredrivenbytherelationshipbetweentheprevailingmarketpriceandafirm’saveragecostTheentryandexitissuecaneconsiderablymorecomplex柯孔林浙江工商大學金融學院73Entry,Exit,andStrategyAfirmwishingtoenterorexitamarketmustmakesomeconjectureabouthowitsactionswillaffectthefuturemarketpricethisrequiresthefirmtoconsiderwhatitsrivalswilldothismayinvolveanumberofstrategicploysespeciallywhenafirm’sinformationaboutitsrivalsisimperfect柯孔林浙江工商大學金融學院74SunkCostsandCommitmentManygametheoreticmodelsofentrystresstheimportanceofafirm’scommitmenttoaspecificmarketlargecapitalinvestmentsthatcannotbeshiftedtoanothermarketwillleadtoalargelevelofcommitmentonthepartofthefirm柯孔林浙江工商大學金融學院75SunkCostsandCommitmentSunkcostsareone-timeinvestmentsthatmustbemadetoenteramarkettheseallowthefirmtoproduceinthemarketbuthavenoresidualvalueifthefirmleavesthemarketcouldincludeexpendituresonuniquetypesofequipmentorjob-specifictrainingofworkers柯孔林浙江工商大學金融學院76First-MoverAdvantageinCournot’sNaturalSpringsUndertheStackelbergversionofthismodel,eachfirmhastwopossiblestrategiesbealeader(qi=60)beafollower(qi=30)柯孔林浙江工商大學金融學院77First-MoverAdvantageinCournot’sNaturalSpringsThepayoffsforthesetwostrategiesare:柯孔林浙江工商大學金融學院78First-MoverAdvantageinCournot’sNaturalSpringsTheleader-leaderstrategyforeachfirmprovestobedisastrousitisnotaNashequilibriumiffirmAknowsthatfirmBwilladoptaleaderstrategy,itsbestmoveistobeafollowerAfollower-followerchoiceisprofitableforbothfirmsthischoiceisunstablebecauseitgiveseachfirmanincentivetocheat柯孔林浙江工商大學金融學院79First-MoverAdvantageinCournot’sNaturalSpringsWithsimultaneousmoves,eitheroftheleader-followerpairsrepresentsaNashequilibriumButifonefirmhastheopportunitytomovefirst,itcandictatewhichofthetwoequilibriaischosenthisisthefirst-moveradvantage柯孔林浙江工商大學金融學院80EntryDeterrenceInsomecases,first-moveradvantagesmaybelargeenoughtodeterallentrybyrivalshowever,itmaynotalwaysbeinthefirm’sbestinteresttocreatethatlargeacapacity柯孔林浙江工商大學金融學院81EntryDeterrenceWitheconomiesofscale,thepossibilityforprofitableentrydeterrenceisincreasedifthefirstmovercanadoptalarge-enoughscaleofoperation,itmaybeabletolimitthescaleofapotentialentrantthepotentialentrantwillexperiencesuchhighaveragecoststhattherewouldbenoadvantagetoenteringthemarket柯孔林浙江工商大學金融學院82EntryDeterrenceinCournot’sNaturalSpringAssumethateachspringownermustpayafixedcostofoperations($784)TheNashequilibriumleader-followerstrategiesremainprofitableforbothfirmsiffirmAmovesfirstandadoptstheleader’srole,B’sprofitsarerelativelysmall($116)AcouldpushBoutofthemarketbybeingabitmoreaggressive柯孔林浙江工商大學金融學院83EntryDeterrenceinCournot’sNaturalSpringSinceB’sreactionfunctionisunaffectedbythefixedcosts,firmAknowsthatqB=(120-qA)/2andmarketpriceisgivenbyP=120-qA-qBFirmAknowsthatB’sprofitsare

B=PqB-784柯孔林浙江工商大學金融學院84EntryDeterrenceinCournot’sNaturalSpringWhenBisafollower,itsprofitsdependonlyonqATherefore,FirmAcanensurenonpositiveprofitsforfirmBbychoosingqA

64FirmAwillearnprofitsof$2,800柯孔林浙江工商大學金融學院85LimitPricingAretheresituationswhereamonopolymightpurposelychoosealow(“l(fā)imit”)pricepolicytodeterentryintoitsmarket?Inmostsimplesituations,thelimitpricingstrategydoesnotyieldmaximumprofitsandisnotsustainableovertimechoosingPL<PMwillonlydeterentryifPLislowerthantheACofanypotentialentrant柯孔林浙江工商大學金融學院86LimitPricingIfthemonopolyandthepotentialentranthavethesamecosts,theonlylimitpricesustainableisPL=ACdefeatsthepurposeofbeingamonopolybecause=0Thus,thebasicmonopolymodelofferslittleroomforentrydeterrencethroughpricingbehavior柯孔林浙江工商大學金融學院87LimitPricingandpleteInformationBelievablemodelsoflimitpricingmustdepartfromtraditionalassumptionsThemostimportantsetofsuchmodelsinvolvespleteinformationifanincumbentmonopolistknowsmoreaboutthemarketsituationthanapotentialentrant,themonopolistmaybeabletodeterentry柯孔林浙江工商大學金融學院88LimitPricingandpleteInformationSupposethatanincumbentmonopolistmayhaveeither“high”or“l(fā)ow”productioncostsasaresultofpastdecisionsTheprofitabilityoffirmB’sentryintothemarketdependsonA’scostsWecanuseatreediagramtoshowB’sdilemma柯孔林浙江工商大學金融學院89LimitPricingandpleteInformation1,34,03,-16,0HighCostLowCostEntryEntryNoEntryNoEntry

ABBTheprofitabilityofentryforFirmBdependsonFirmA’scostswhichareunknowntoB柯孔林浙江工商大學金融學院90LimitPricingandpleteInformationFirmBcouldusewhateverinformationithastodevelopasubjectiveprobabilityofA’scoststructureIfBassumesthatthereisaprobabilityof

thatAhashighcostand(1-

)thatithaslowcost,entrywillyieldpositiveexpectedprofitsifE(B)=(3)+(1-)(-1)>0>?柯孔林浙江工商大學金融學院91LimitPricingandpleteInformationRegardlessofitstruecosts,firmAisbetteroffifBdoesnotenterOnewaytoensurethisisforAtoconvinceBthat

<?FirmAmaychoosealow-pricestrategythentosignalfirmBthatitscostsarelowthisprovidesapossiblerationaleforlimitpricing柯孔林浙江工商大學金融學院92PredatoryPricingThestructureofmanymodelsofpredatorybehaviorissimilartothatusedinlimitpricingmodelsstresspleteinformationAfirmwishestoencourageitsrivaltoexitthemarketittakesactionstoaffectitsrival’sviewsofthefutureprofitabilityofremaininginthemarket柯孔林浙江工商大學金融學院93GamesofpleteInformationEachplayerinagamemaybeoneofanumberofpossibletypes(tAandtB)playertypescanvaryalongseveraldimensionsWewillassumethatourplayertypeshavedifferingpotentialpayofffunctionseachplayerknowshisownpayoffbutdoesnotknowhisopponent’spayoffwithcertainty柯孔林浙江工商大學金融學院94GamesofpleteInformationEachplayer’sconjecturesabouttheopponent’splayertypearerepresentedbybelieffunctions[fA(tB)]consistoftheplayer’sprobabilityestimatesofthelikelihoodthathisopponentisofvarioustypesGamesofpleteinformationaresometimesreferredtoasBayesiangames柯孔林浙江

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論