




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣西崇左市2023屆招生全國統(tǒng)一考試考模擬調(diào)研卷數(shù)學試題(四)注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則的大小關(guān)系為()A. B. C. D.2.已知向量,夾角為,,,則()A.2 B.4 C. D.3.若復數(shù)滿足,則對應的點位于復平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知甲、乙兩人獨立出行,各租用共享單車一次(假定費用只可能為、、元).甲、乙租車費用為元的概率分別是、,甲、乙租車費用為元的概率分別是、,則甲、乙兩人所扣租車費用相同的概率為()A. B. C. D.5.拋物線的焦點為F,點為該拋物線上的動點,若點,則的最小值為()A. B. C. D.6.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.87.一個袋中放有大小、形狀均相同的小球,其中紅球1個、黑球2個,現(xiàn)隨機等可能取出小球,當有放回依次取出兩個小球時,記取出的紅球數(shù)為;當無放回依次取出兩個小球時,記取出的紅球數(shù)為,則()A., B.,C., D.,8.已知是邊長為的正三角形,若,則A. B.C. D.9.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實數(shù)的取值范圍是A. B. C. D.10.已知雙曲線的左,右焦點分別為、,過的直線l交雙曲線的右支于點P,以雙曲線的實軸為直徑的圓與直線l相切,切點為H,若,則雙曲線C的離心率為()A. B. C. D.11.若實數(shù)、滿足,則的最小值是()A. B. C. D.12.在中,角所對的邊分別為,已知,則()A.或 B. C. D.或二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)雙曲線的左焦點為,過點且傾斜角為45°的直線與雙曲線的兩條漸近線順次交于,兩點若,則的離心率為________.14.已知集合,則____________.15.已知,則展開式中的系數(shù)為__16.已知的展開式中含有的項的系數(shù)是,則展開式中各項系數(shù)和為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某省新課改后某校為預測2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計圖.(1)根據(jù)條形統(tǒng)計圖,估計本屆高三學生本科上線率.(2)已知該省甲市2020屆高考考生人數(shù)為4萬,假設(shè)以(1)中的本科上線率作為甲市每個考生本科上線的概率.(i)若從甲市隨機抽取10名高三學生,求恰有8名學生達到本科線的概率(結(jié)果精確到0.01);(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬,假設(shè)該市每個考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.可能用到的參考數(shù)據(jù):取,.18.(12分)一年之計在于春,一日之計在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對一塊地的個坑進行播種,每個坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨立.對每一個坑而言,如果至少有兩粒種子發(fā)芽,則不需要進行補播種,否則要補播種.(1)當取何值時,有3個坑要補播種的概率最大?最大概率為多少?(2)當時,用表示要補播種的坑的個數(shù),求的分布列與數(shù)學期望.19.(12分)已知函數(shù)有兩個零點.(1)求的取值范圍;(2)是否存在實數(shù),對于符合題意的任意,當時均有?若存在,求出所有的值;若不存在,請說明理由.20.(12分)某公園有一塊邊長為3百米的正三角形空地,擬將它分割成面積相等的三個區(qū)域,用來種植三種花卉.方案是:先建造一條直道將分成面積之比為的兩部分(點D,E分別在邊,上);再取的中點M,建造直道(如圖).設(shè),,(單位:百米).(1)分別求,關(guān)于x的函數(shù)關(guān)系式;(2)試確定點D的位置,使兩條直道的長度之和最小,并求出最小值.21.(12分)為了解廣大學生家長對校園食品安全的認識,某市食品安全檢測部門對該市家長進行了一次校園食品安全網(wǎng)絡(luò)知識問卷調(diào)查,每一位學生家長僅有一次參加機會,現(xiàn)對有效問卷進行整理,并隨機抽取出了200份答卷,統(tǒng)計這些答卷的得分(滿分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認為,此次問卷調(diào)查的得分服從正態(tài)分布,其中近似為這200人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值作為代表).(1)請利用正態(tài)分布的知識求;(2)該市食品安全檢測部門為此次參加問卷調(diào)查的學生家長制定如下獎勵方案:①得分不低于的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費:②每次獲贈的隨機話費和對應的概率為:獲贈的隨機話費(單位:元)概率市食品安全檢測部門預計參加此次活動的家長約5000人,請依據(jù)以上數(shù)據(jù)估計此次活動可能贈送出多少話費?附:①;②若;則,,.22.(10分)在中,角的對邊分別為,且,.(1)求的值;(2)若求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,可得,再利用對數(shù)函數(shù)的單調(diào)性,將與對比,即可求出結(jié)論.【詳解】由題知,,則.故選:A.【點睛】本題考查利用函數(shù)性質(zhì)比較大小,注意與特殊數(shù)的對比,屬于基礎(chǔ)題..2、A【解析】
根據(jù)模長計算公式和數(shù)量積運算,即可容易求得結(jié)果.【詳解】由于,故選:A.【點睛】本題考查向量的數(shù)量積運算,模長的求解,屬綜合基礎(chǔ)題.3、D【解析】
利用復數(shù)模的計算、復數(shù)的除法化簡復數(shù),再根據(jù)復數(shù)的幾何意義,即可得答案;【詳解】,對應的點,對應的點位于復平面的第四象限.故選:D.【點睛】本題考查復數(shù)模的計算、復數(shù)的除法、復數(shù)的幾何意義,考查運算求解能力,屬于基礎(chǔ)題.4、B【解析】
甲、乙兩人所扣租車費用相同即同為1元,或同為2元,或同為3元,由獨立事件的概率公式計算即得.【詳解】由題意甲、乙租車費用為3元的概率分別是,∴甲、乙兩人所扣租車費用相同的概率為.故選:B.【點睛】本題考查獨立性事件的概率.掌握獨立事件的概率乘法公式是解題基礎(chǔ).5、B【解析】
通過拋物線的定義,轉(zhuǎn)化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準線方程為,,過作垂直直線于,由拋物線的定義可知,連結(jié),當是拋物線的切線時,有最小值,則最大,即最大,就是直線的斜率最大,設(shè)在的方程為:,所以,解得:,所以,解得,所以,.故選:.【點睛】本題考查拋物線的基本性質(zhì),直線與拋物線的位置關(guān)系,轉(zhuǎn)化思想的應用,屬于基礎(chǔ)題.6、B【解析】
建立平面直角坐標系,將已知條件轉(zhuǎn)化為所設(shè)未知量的關(guān)系式,再將的最小值轉(zhuǎn)化為用該關(guān)系式表達的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標系如下圖所示,設(shè),,且,由于,所以..所以,即..當且僅當時取得最小值,此時由得,當時,有最小值為,即,,解得.所以當且僅當時有最小值為.故選:B【點睛】本小題主要考查向量的位置關(guān)系、向量的模,考查基本不等式的運用,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于難題.7、B【解析】
分別求出兩個隨機變量的分布列后求出它們的期望和方差可得它們的大小關(guān)系.【詳解】可能的取值為;可能的取值為,,,,故,.,,故,,故,.故選B.【點睛】離散型隨機變量的分布列的計算,應先確定隨機變量所有可能的取值,再利用排列組合知識求出隨機變量每一種取值情況的概率,然后利用公式計算期望和方差,注意在取球模型中摸出的球有放回與無放回的區(qū)別.8、A【解析】
由可得,因為是邊長為的正三角形,所以,故選A.9、D【解析】
由題意得,表示不等式的解集中整數(shù)解之和為6.當時,數(shù)形結(jié)合(如圖)得的解集中的整數(shù)解有無數(shù)多個,解集中的整數(shù)解之和一定大于6.當時,,數(shù)形結(jié)合(如圖),由解得.在內(nèi)有3個整數(shù)解,為1,2,3,滿足,所以符合題意.當時,作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當時,實數(shù)的取值范圍是.故選D.10、A【解析】
在中,由余弦定理,得到,再利用即可建立的方程.【詳解】由已知,,在中,由余弦定理,得,又,,所以,,故選:A.【點睛】本題考查雙曲線離心率的計算問題,處理雙曲線離心率問題的關(guān)鍵是建立三者間的關(guān)系,本題是一道中檔題.11、D【解析】
根據(jù)約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標,代入目標函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點,由得,平移直線,當該直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故選:D.【點睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.12、D【解析】
根據(jù)正弦定理得到,化簡得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點睛】本題考查了正弦定理解三角形,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè)直線的方程為,與聯(lián)立得到A點坐標,由得,,代入可得,即得解.【詳解】由題意,直線的方程為,與聯(lián)立得,,由得,,從而,即,從而離心率.故答案為:【點睛】本題考查了雙曲線的離心率,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.14、【解析】
根據(jù)并集的定義計算即可.【詳解】由集合的并集,知.故答案為:【點睛】本題考查集合的并集運算,屬于容易題.15、1.【解析】
由題意求定積分得到的值,再根據(jù)乘方的意義,排列組合數(shù)的計算公式,求出展開式中的系數(shù).【詳解】∵已知,則,
它表示4個因式的乘積.
故其中有2個因式取,一個因式取,剩下的一個因式取1,可得的項.
故展開式中的系數(shù).
故答案為:1.【點睛】本題主要考查求定積分,乘方的意義,排列組合數(shù)的計算公式,屬于中檔題.16、1【解析】
由二項式定理及展開式通項公式得:,解得,令得:展開式中各項系數(shù)和,得解.【詳解】解:由的展開式的通項,令,得含有的項的系數(shù)是,解得,令得:展開式中各項系數(shù)和為,故答案為:1.【點睛】本題考查了二項式定理及展開式通項公式,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)60%;(2)(i)0.12(ii)【解析】
(1)利用上線人數(shù)除以總?cè)藬?shù)求解;(2)(i)利用二項分布求解;(ii)甲、乙兩市上線人數(shù)分別記為X,Y,得,.,利用期望公式列不等式求解【詳解】(1)估計本科上線率為.(2)(i)記“恰有8名學生達到本科線”為事件A,由圖可知,甲市每個考生本科上線的概率為0.6,則.(ii)甲、乙兩市2020屆高考本科上線人數(shù)分別記為X,Y,依題意,可得,.因為2020屆高考本科上線人數(shù)乙市的均值不低于甲市,所以,即,解得,又,故p的取值范圍為.【點睛】本題考查二項分布的綜合應用,考查計算求解能力,注意二項分布與超幾何分布是易混淆的知識點.18、(1)當或時,有3個坑要補播種的概率最大,最大概率為;(2)見解析.【解析】
(1)將有3個坑需要補種表示成n的函數(shù),考查函數(shù)隨n的變化情況,即可得到n為何值時有3個坑要補播種的概率最大.(2)n=1時,X的所有可能的取值為0,1,2,3,1.分別計算出每個變量對應的概率,列出分布列,求期望即可.【詳解】(1)對一個坑而言,要補播種的概率,有3個坑要補播種的概率為.欲使最大,只需,解得,因為,所以當時,;當時,;所以當或時,有3個坑要補播種的概率最大,最大概率為.(2)由已知,的可能取值為0,1,2,3,1.,所以的分布列為01231的數(shù)學期望.【點睛】本題考查了古典概型的概率求法,離散型隨機變量的概率分布,二項分布,主要考查簡單的計算,屬于中檔題.19、(1);(2).【解析】
(1)對求導,對參數(shù)進行分類討論,根據(jù)函數(shù)單調(diào)性即可求得.(2)先根據(jù),得,再根據(jù)零點解得,轉(zhuǎn)化不等式得,令,化簡得,因此,,最后根據(jù)導數(shù)研究對應函數(shù)單調(diào)性,確定對應函數(shù)最值,即得取值集合.【詳解】(1),當時,對恒成立,與題意不符,當,,∴時,即函數(shù)在單調(diào)遞增,在單調(diào)遞減,∵和時均有,∴,解得:,綜上可知:的取值范圍;(2)由(1)可知,則,由的任意性及知,,且,∴,故,又∵,令,則,且恒成立,令,而,∴時,時,∴,令,若,則時,,即函數(shù)在單調(diào)遞減,∴,與不符;若,則時,,即函數(shù)在單調(diào)遞減,∴,與式不符;若,解得,此時恒成立,,即函數(shù)在單調(diào)遞增,又,∴時,;時,符合式,綜上,存在唯一實數(shù)符合題意.【點睛】利用導數(shù)研究不等式恒成立或存在型問題,首先要構(gòu)造函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性,求出最值,進而得出相應的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.20、(1),.,.(2)當百米時,兩條直道的長度之和取得最小值百米.【解析】
(1)由,可解得.方法一:再在中,利用余弦定理,可得關(guān)于x的函數(shù)關(guān)系式;在和中,利用余弦定理,可得關(guān)于x的函數(shù)關(guān)系式.方法二:在中,可得,則有,化簡整理即得;同理,化簡整理即得.(2)由(1)和基本不等式,計算即得.【詳解】解:(1),是邊長為3的等邊三角形,又,,.由,得.法1:在中,由余弦定理,得.故直道長度關(guān)于x的函數(shù)關(guān)系式為,.在和中,由余弦定理,得①②因為M為的中點,所以.由①②,得,所以,所以.所以,直道長度關(guān)于x的函數(shù)關(guān)系式為,.法2:因為在中,,所以.所以,直道長度關(guān)于x的函數(shù)關(guān)系式為,.在中,因為M為的中點,所以.所以.所以,直道長度關(guān)于x的函數(shù)關(guān)系式為,.(2)由(1)得,兩條直道的長度之和為(當且僅當即時取“”).故當百米時,兩條直道的長度之和取得最小值百米.【點睛】本題考查了余弦定理和基本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年電子地感項目投資可行性研究分析報告
- 模擬快樂足球行業(yè)深度研究報告
- 蘑菇保鮮膜行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- 2024年龍里縣人民醫(yī)院(醫(yī)共體)總院招聘工作人員考試真題
- 無害化垃圾填埋場工程項目可行性研究報告
- 2025年度商鋪租賃合同副本及年度維護協(xié)議
- 2025年度大棚種植與農(nóng)業(yè)品牌建設(shè)合作協(xié)議
- 2025年度銷售保密協(xié)議:適用于跨境電商平臺數(shù)據(jù)安全
- 2025年度口腔護理專業(yè)人才聘用與管理協(xié)議
- 中途退場合同范本
- (完整文本版)日文履歷書(文本テンプレート)
- 110kV變電站專項電氣試驗及調(diào)試方案
- 2023三年級語文下冊 第八單元 語文園地配套教案 新人教版
- 全國川教版信息技術(shù)八年級下冊第一單元第1節(jié) 《設(shè)計創(chuàng)意掛件》教學設(shè)計
- 2024時事政治必考試題庫(預熱題)
- 品質(zhì)部組織架構(gòu)圖構(gòu)
- 《幼兒園性教育》
- (高清版)TDT 1040-2013 土地整治項目制圖規(guī)范
- 《漏》公開課一等獎創(chuàng)新教案設(shè)計
- 暖氣維修常識知識培訓課件
- 兒童合理用藥知識培訓課件
評論
0/150
提交評論