版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
云南師大附中2023年高三第二次模擬考試(B卷)數(shù)學(xué)試題試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點(diǎn),點(diǎn)P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或52.已知函數(shù),,當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)a的取值范圍為()A. B. C. D.3.已知為虛數(shù)單位,實(shí)數(shù)滿足,則()A.1 B. C. D.4.函數(shù)與在上最多有n個(gè)交點(diǎn),交點(diǎn)分別為(,……,n),則()A.7 B.8 C.9 D.105.為實(shí)現(xiàn)國(guó)民經(jīng)濟(jì)新“三步走”的發(fā)展戰(zhàn)略目標(biāo),國(guó)家加大了扶貧攻堅(jiān)的力度.某地區(qū)在2015年以前的年均脫貧率(脫離貧困的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為.2015年開(kāi)始,全面實(shí)施“精準(zhǔn)扶貧”政策后,扶貧效果明顯提高,其中2019年度實(shí)施的扶貧項(xiàng)目,各項(xiàng)目參加戶數(shù)占比(參加該項(xiàng)目戶數(shù)占2019年貧困戶總數(shù)的比)及該項(xiàng)目的脫貧率見(jiàn)下表:實(shí)施項(xiàng)目種植業(yè)養(yǎng)殖業(yè)工廠就業(yè)服務(wù)業(yè)參加用戶比脫貧率那么年的年脫貧率是實(shí)施“精準(zhǔn)扶貧”政策前的年均脫貧率的()A.倍 B.倍 C.倍 D.倍6.已知函數(shù),為的零點(diǎn),為圖象的對(duì)稱(chēng)軸,且在區(qū)間上單調(diào),則的最大值是()A. B. C. D.7.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.88.《九章算術(shù)》勾股章有一“引葭赴岸”問(wèn)題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問(wèn)水深,葭各幾何?”,其意思是:有一個(gè)直徑為一丈的圓柱形水池,池中心生有一顆類(lèi)似蘆葦?shù)闹参铮冻鏊鎯沙?,若把它引向岸邊,正好與岸邊齊,問(wèn)水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為()A. B. C. D.9.已知函數(shù)是定義在上的奇函數(shù),函數(shù)滿足,且時(shí),,則()A.2 B. C.1 D.10.已知滿足,,,則在上的投影為()A. B. C. D.211.在等差數(shù)列中,若,則()A.8 B.12 C.14 D.1012.已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,且,則公比的值為()A. B.或 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平行四邊形中,已知,,,若,,則____________.14.已知(且)有最小值,且最小值不小于1,則的取值范圍為_(kāi)_________.15.已知一個(gè)圓錐的底面積和側(cè)面積分別為和,則該圓錐的體積為_(kāi)_______16.在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)是直線:上位于第一象限內(nèi)的一點(diǎn).已知以為直徑的圓被直線所截得的弦長(zhǎng)為,則點(diǎn)的坐標(biāo)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)記函數(shù)的最小值為.(1)求的值;(2)若正數(shù),,滿足,證明:.18.(12分)在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出“停課不停學(xué)”的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績(jī)與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,對(duì)高三年級(jí)隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問(wèn)卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)的有19人,余下的人中,在檢測(cè)考試中數(shù)學(xué)平均成績(jī)不足120分的占,統(tǒng)計(jì)成績(jī)后得到如下列聯(lián)表:分?jǐn)?shù)不少于120分分?jǐn)?shù)不足120分合計(jì)線上學(xué)習(xí)時(shí)間不少于5小時(shí)419線上學(xué)習(xí)時(shí)間不足5小時(shí)合計(jì)45(1)請(qǐng)完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”;(2)①按照分層抽樣的方法,在上述樣本中從分?jǐn)?shù)不少于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到不足120分且每周線上學(xué)習(xí)時(shí)間不足5小時(shí)的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);②若將頻率視為概率,從全校高三該次檢測(cè)數(shù)學(xué)成績(jī)不少于120分的學(xué)生中隨機(jī)抽取20人,求這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(參考公式其中)19.(12分)已知函數(shù),.(1)求曲線在點(diǎn)處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間;(3)判斷函數(shù)的零點(diǎn)個(gè)數(shù).20.(12分)已知橢圓()的離心率為,且經(jīng)過(guò)點(diǎn).(1)求橢圓的方程;(2)過(guò)點(diǎn)作直線與橢圓交于不同的兩點(diǎn),,試問(wèn)在軸上是否存在定點(diǎn)使得直線與直線恰關(guān)于軸對(duì)稱(chēng)?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.21.(12分)如圖,在三棱柱中,平面平面,側(cè)面為平行四邊形,側(cè)面為正方形,,,為的中點(diǎn).(1)求證:平面;(2)求二面角的大小.22.(10分)已知函數(shù)有兩個(gè)零點(diǎn).(1)求的取值范圍;(2)是否存在實(shí)數(shù),對(duì)于符合題意的任意,當(dāng)時(shí)均有?若存在,求出所有的值;若不存在,請(qǐng)說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.【點(diǎn)睛】本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎(chǔ)題.2、D【解析】
由變形可得,可知函數(shù)在為增函數(shù),由恒成立,求解參數(shù)即可求得取值范圍.【詳解】,即函數(shù)在時(shí)是單調(diào)增函數(shù).則恒成立..令,則時(shí),單調(diào)遞減,時(shí)單調(diào)遞增.故選:D.【點(diǎn)睛】本題考查構(gòu)造函數(shù),借助單調(diào)性定義判斷新函數(shù)的單調(diào)性問(wèn)題,考查恒成立時(shí)求解參數(shù)問(wèn)題,考查學(xué)生的分析問(wèn)題的能力和計(jì)算求解的能力,難度較難.3、D【解析】,則故選D.4、C【解析】
根據(jù)直線過(guò)定點(diǎn),采用數(shù)形結(jié)合,可得最多交點(diǎn)個(gè)數(shù),然后利用對(duì)稱(chēng)性,可得結(jié)果.【詳解】由題可知:直線過(guò)定點(diǎn)且在是關(guān)于對(duì)稱(chēng)如圖通過(guò)圖像可知:直線與最多有9個(gè)交點(diǎn)同時(shí)點(diǎn)左、右邊各四個(gè)交點(diǎn)關(guān)于對(duì)稱(chēng)所以故選:C【點(diǎn)睛】本題考查函數(shù)對(duì)稱(chēng)性的應(yīng)用,數(shù)形結(jié)合,難點(diǎn)在于正確畫(huà)出圖像,同時(shí)掌握基礎(chǔ)函數(shù)的性質(zhì),屬難題.5、B【解析】
設(shè)貧困戶總數(shù)為,利用表中數(shù)據(jù)可得脫貧率,進(jìn)而可求解.【詳解】設(shè)貧困戶總數(shù)為,脫貧率,所以.故年的年脫貧率是實(shí)施“精準(zhǔn)扶貧”政策前的年均脫貧率的倍.故選:B【點(diǎn)睛】本題考查了概率與統(tǒng)計(jì),考查了學(xué)生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.6、B【解析】
由題意可得,且,故有①,再根據(jù),求得②,由①②可得的最大值,檢驗(yàn)的這個(gè)值滿足條件.【詳解】解:函數(shù),,為的零點(diǎn),為圖象的對(duì)稱(chēng)軸,,且,、,,即為奇數(shù)①.在,單調(diào),,②.由①②可得的最大值為1.當(dāng)時(shí),由為圖象的對(duì)稱(chēng)軸,可得,,故有,,滿足為的零點(diǎn),同時(shí)也滿足滿足在上單調(diào),故為的最大值,故選:B.【點(diǎn)睛】本題主要考查正弦函數(shù)的圖象的特征,正弦函數(shù)的周期性以及它的圖象的對(duì)稱(chēng)性,屬于中檔題.7、B【解析】
建立平面直角坐標(biāo)系,將已知條件轉(zhuǎn)化為所設(shè)未知量的關(guān)系式,再將的最小值轉(zhuǎn)化為用該關(guān)系式表達(dá)的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標(biāo)系如下圖所示,設(shè),,且,由于,所以..所以,即..當(dāng)且僅當(dāng)時(shí)取得最小值,此時(shí)由得,當(dāng)時(shí),有最小值為,即,,解得.所以當(dāng)且僅當(dāng)時(shí)有最小值為.故選:B【點(diǎn)睛】本小題主要考查向量的位置關(guān)系、向量的模,考查基本不等式的運(yùn)用,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于難題.8、C【解析】
由題意知:,,設(shè),則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設(shè),則在中,列勾股方程得:,解得所以從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為故選C.【點(diǎn)睛】本題考查了幾何概型中的長(zhǎng)度型,屬于基礎(chǔ)題.9、D【解析】
說(shuō)明函數(shù)是周期函數(shù),由周期性把自變量的值變小,再結(jié)合奇偶性計(jì)算函數(shù)值.【詳解】由知函數(shù)的周期為4,又是奇函數(shù),,又,∴,∴.故選:D.【點(diǎn)睛】本題考查函數(shù)的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎(chǔ).10、A【解析】
根據(jù)向量投影的定義,即可求解.【詳解】在上的投影為.故選:A【點(diǎn)睛】本題考查向量的投影,屬于基礎(chǔ)題.11、C【解析】
將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設(shè)等差數(shù)列的首項(xiàng)為,公差為,則由,,得解得,,所以.故選C.【點(diǎn)睛】本題考查等差數(shù)列的基本量的求解,難度較易.已知等差數(shù)列的任意兩項(xiàng)的值,可通過(guò)構(gòu)建和的方程組求通項(xiàng)公式.12、C【解析】
由可得,故可求的值.【詳解】因?yàn)椋?,故,因?yàn)檎?xiàng)等比數(shù)列,故,所以,故選C.【點(diǎn)睛】一般地,如果為等比數(shù)列,為其前項(xiàng)和,則有性質(zhì):(1)若,則;(2)公比時(shí),則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè),則,得到,,利用向量的數(shù)量積的運(yùn)算,即可求解.【詳解】由題意,如圖所示,設(shè),則,又由,,所以為的中點(diǎn),為的三等分點(diǎn),則,,所以.【點(diǎn)睛】本題主要考查了向量的共線定理以及向量的數(shù)量積的運(yùn)算,其中解答中熟記向量的線性運(yùn)算法則,以及向量的共線定理和向量的數(shù)量積的運(yùn)算公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.14、【解析】
真數(shù)有最小值,根據(jù)已知可得的范圍,求出函數(shù)的最小值,建立關(guān)于的不等量關(guān)系,求解即可.【詳解】,且(且)有最小值,,的取值范圍為.故答案為:.【點(diǎn)睛】本題考查對(duì)數(shù)型復(fù)合函數(shù)的性質(zhì),熟練掌握基本初等函數(shù)的性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.15、【解析】
依據(jù)圓錐的底面積和側(cè)面積公式,求出底面半徑和母線長(zhǎng),再根據(jù)勾股定理求出圓錐的高,最后利用圓錐的體積公式求出體積?!驹斀狻吭O(shè)圓錐的底面半徑為,母線長(zhǎng)為,高為,所以有解得,故該圓錐的體積為?!军c(diǎn)睛】本題主要考查圓錐的底面積、側(cè)面積和體積公式的應(yīng)用。16、【解析】
依題意畫(huà)圖,設(shè),根據(jù)圓的直徑所對(duì)的圓周角為直角,可得,通過(guò)勾股定理得,再利用兩點(diǎn)間的距離公式即可求出,進(jìn)而得出點(diǎn)坐標(biāo).【詳解】解:依題意畫(huà)圖,設(shè)以為直徑的圓被直線所截得的弦長(zhǎng)為,且,又因?yàn)闉閳A的直徑,則所對(duì)的圓周角,則,則為點(diǎn)到直線:的距離.所以,則.又因?yàn)辄c(diǎn)在直線:上,設(shè),則.解得,則.故答案為:【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系,考查了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析【解析】
(1)將函數(shù)轉(zhuǎn)化為分段函數(shù)或利用絕對(duì)值三角不等式進(jìn)行求解;(2)利用基本不等式或柯西不等式證明即可.【詳解】解法一:(1)當(dāng)時(shí),,當(dāng),,當(dāng)時(shí),,所以解法二:(1)如圖當(dāng)時(shí),解法三:(1)當(dāng)且僅當(dāng)即時(shí),等號(hào)成立.當(dāng)時(shí)解法一:(2)由題意可知,,因?yàn)椋?,,所以要證明不等式,只需證明,因?yàn)槌闪?,所以原不等式成?解法二:(2)因?yàn)?,,,所以,,又因?yàn)椋?,所以,原不等式得證.補(bǔ)充:解法三:(2)由題意可知,,因?yàn)?,,,所以要證明不等式,只需證明,由柯西不等式得:成立,所以原不等式成立.【點(diǎn)睛】本題主要考查了絕對(duì)值函數(shù)的最值求解,不等式的證明,絕對(duì)值三角不等式,基本不等式及柯西不等式的應(yīng)用,考查了學(xué)生的邏輯推理和運(yùn)算求解能力.18、(1)填表見(jiàn)解析;有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”(2)①詳見(jiàn)解析②期望;方差【解析】
(1)完成列聯(lián)表,代入數(shù)據(jù)即可判斷;(2)利用分層抽樣可得的取值,進(jìn)而得到概率,列出分布列;根據(jù)分析知,計(jì)算出期望與方差.【詳解】(1)分?jǐn)?shù)不少于120分分?jǐn)?shù)不足120分合計(jì)線上學(xué)習(xí)時(shí)間不少于5小時(shí)15419線上學(xué)習(xí)時(shí)間不足5小時(shí)101626合計(jì)252045有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”.(2)①由分層抽樣知,需要從不足120分的學(xué)生中抽取人,的可能取值為0,1,2,3,4,,,,,所以,的分布列:②從全校不少于120分的學(xué)生中隨機(jī)抽取1人,此人每周上線時(shí)間不少于5小時(shí)的概率為,設(shè)從全校不少于120分的學(xué)生中隨機(jī)抽取20人,這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)為,則,故,.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn)與離散型隨機(jī)變量的分布列、數(shù)學(xué)期望與方差的計(jì)算問(wèn)題,屬于基礎(chǔ)題.19、(1)(2)答案見(jiàn)解析(3)答案見(jiàn)解析【解析】
(1)設(shè)曲線在點(diǎn),處的切線的斜率為,可求得,,利用直線的點(diǎn)斜式方程即可求得答案;(2)由(Ⅰ)知,,分時(shí),,三類(lèi)討論,即可求得各種情況下的的單調(diào)區(qū)間為;(3)分與兩類(lèi)討論,即可判斷函數(shù)的零點(diǎn)個(gè)數(shù).【詳解】(1),,設(shè)曲線在點(diǎn),處的切線的斜率為,則,又,曲線在點(diǎn),處的切線方程為:,即;(2)由(1)知,,故當(dāng)時(shí),,所以在上單調(diào)遞增;當(dāng)時(shí),,;,,;的遞減區(qū)間為,遞增區(qū)間為,;當(dāng)時(shí),同理可得的遞增區(qū)間為,遞減區(qū)間為,;綜上所述,時(shí),單調(diào)遞增為,無(wú)遞減區(qū)間;當(dāng)時(shí),的遞減區(qū)間為,遞增區(qū)間為,;當(dāng)時(shí),的遞增區(qū)間為,遞減區(qū)間為,;(3)當(dāng)時(shí),恒成立,所以無(wú)零點(diǎn);當(dāng)時(shí),由,得:,只有一個(gè)零點(diǎn).【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查分類(lèi)討論思想與推理、運(yùn)算能力,屬于中檔題.20、(1)(2)見(jiàn)解析【解析】
(1)由題得a,b,c的方程組求解即可(2)直線與直線恰關(guān)于軸對(duì)稱(chēng),等價(jià)于的斜率互為相反數(shù),即,整理.設(shè)直線的方程為,與橢圓聯(lián)立,將韋達(dá)定理代入整理即可.【詳解】(1)由題意可得,,又,解得,.所以,橢圓的方程為(2)存在定點(diǎn),滿足直線與直線恰關(guān)于軸對(duì)稱(chēng).設(shè)直線的方程為,與橢圓聯(lián)立,整理得,.設(shè),,定點(diǎn).(依題意則由韋達(dá)定理可得,,.直線與直線恰關(guān)于軸對(duì)稱(chēng),等價(jià)于的斜率互為相反數(shù).所以,,即得.又,,所以,,整理得,.從而可得,,即,所以,當(dāng),即時(shí),直線與直線恰關(guān)于軸對(duì)稱(chēng)成立.特別地,當(dāng)直線為軸時(shí),也符合題意.綜上所述,存在軸上的定點(diǎn),滿足直線與直線恰關(guān)于軸對(duì)稱(chēng).【點(diǎn)睛】本題考查橢圓方程,直線與橢圓位置關(guān)系,熟記橢圓方程簡(jiǎn)單性質(zhì),熟練轉(zhuǎn)化題目條件,準(zhǔn)確計(jì)算是關(guān)鍵,是中檔題.21、(1)證明見(jiàn)解析(2)【解析】
(1)連接,交與,連
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨沂職業(yè)學(xué)院《篆刻2》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西應(yīng)用工程職業(yè)學(xué)院《建筑設(shè)備自動(dòng)化系統(tǒng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖北開(kāi)放職業(yè)學(xué)院《城市設(shè)計(jì)B》2023-2024學(xué)年第一學(xué)期期末試卷
- 遵義職業(yè)技術(shù)學(xué)院《中國(guó)古代文學(xué)5》2023-2024學(xué)年第一學(xué)期期末試卷
- 株洲師范高等專(zhuān)科學(xué)?!斗沁z影像策劃與制作》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶青年職業(yè)技術(shù)學(xué)院《數(shù)據(jù)結(jié)構(gòu)及算法》2023-2024學(xué)年第一學(xué)期期末試卷
- 株洲師范高等專(zhuān)科學(xué)?!吨攸c(diǎn)傳染病防治知識(shí)規(guī)培》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江外國(guó)語(yǔ)學(xué)院《課程與教學(xué)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江工貿(mào)職業(yè)技術(shù)學(xué)院《建筑美術(shù)Ⅲ》2023-2024學(xué)年第一學(xué)期期末試卷
- 中南林業(yè)科技大學(xué)《物理化學(xué)(1)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2023遼寧公務(wù)員考試《行測(cè)》真題(含答案及解析)
- 2024-2030年鋁合金粉行業(yè)市場(chǎng)現(xiàn)狀供需分析及重點(diǎn)企業(yè)投資評(píng)估規(guī)劃分析研究報(bào)告
- JGJ106-2014建筑基樁檢測(cè)技術(shù)規(guī)范
- 植入(介入)性醫(yī)療器械管理制度
- 遼寧農(nóng)業(yè)職業(yè)技術(shù)學(xué)院2024年單招復(fù)習(xí)題庫(kù)(普通高中畢業(yè)生)-數(shù)學(xué)(130道)
- 內(nèi)鏡下粘膜剝離術(shù)(ESD)護(hù)理要點(diǎn)及健康教育課件
- 2024年民族宗教理論政策知識(shí)競(jìng)賽考試題庫(kù)及答案
- 項(xiàng)目七電子商務(wù)消費(fèi)者權(quán)益保護(hù)的法律法規(guī)
- 品質(zhì)經(jīng)理工作總結(jié)
- 供電搶修述職報(bào)告
- 集成電路設(shè)計(jì)工藝節(jié)點(diǎn)演進(jìn)趨勢(shì)
評(píng)論
0/150
提交評(píng)論