版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年北京市昌平區(qū)實驗中學(xué)高二上數(shù)學(xué)期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若數(shù)列滿足,則()A. B.C. D.2.已知函數(shù)有兩個不同的零點,則實數(shù)的取值范圍是()A B.C. D.3.若,則()A.0 B.1C. D.24.據(jù)有關(guān)文獻記載:我國古代一座層塔共掛了盞燈,且相鄰兩層中的下一層燈數(shù)比上一層燈數(shù)都多為常數(shù)盞,底層的燈數(shù)是頂層的倍,則塔的底層共有燈()A.盞 B.盞C.盞 D.盞5.已知中,角,,的對邊分別為,,,且,,成等比數(shù)列,則這個三角形的形狀是()A.直角三角形 B.等邊三角形C.等腰直角三角形 D.鈍角三角形6.已知,則方程與在同一坐標系內(nèi)對應(yīng)的圖形編號可能是()A.①④ B.②③C.①② D.③④7.已知橢圓的左、右焦點分別為、,點在橢圓上,若,則的面積為()A. B.C. D.8.某大學(xué)數(shù)學(xué)系共有本科生1500人,其中一、二、三、四年級的人數(shù)比為,要用分層隨機抽樣的方法從中抽取一個容量為300的樣本,則應(yīng)抽取的三年級學(xué)生的人數(shù)為()A.20 B.40C.60 D.809.已知是上的單調(diào)增函數(shù),則的取值范圍是A.﹣1b2 B.﹣1b2C.b﹣2或b2 D.b﹣1或b210.已知等差數(shù)列{an}中,a4+a9=8,則S12=()A.96 B.48C.36 D.2411.某家庭準備晚上在餐館吃飯,他們查看了兩個網(wǎng)站關(guān)于四家餐館的好評率,如下表所示,考慮每家餐館的總好評率,他們應(yīng)選擇()網(wǎng)站①評價人數(shù)網(wǎng)站①好評率網(wǎng)站②評價人數(shù)網(wǎng)站②好評率餐館甲100095%100085%餐館乙1000100%200080%餐館丙100090%100090%餐館丁200095%100085%A.餐館甲 B.餐館乙C.餐館丙 D.餐館丁12.已知圓,則圓C關(guān)于直線對稱的圓的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓:,圓:,則圓與圓的位置關(guān)系是______14.甲、乙兩人下棋,甲獲勝的概率為,乙獲勝的概率為,則甲、乙兩人下成和棋的概率為___________.15.已知曲線與曲線有相同的切線,則________16.已知函數(shù),則滿足實數(shù)的取值范圍是__三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面,,是的中點,,.(1)證明:;(2)求直線與平面所成角的正弦值.18.(12分)已知函數(shù).(1)當時,討論的單調(diào)性;(2)當時,,求a的取值范圍.19.(12分)已知拋物線C:上有一動點,,過點P作拋物線C的切線交y軸于點Q(1)判斷線段PQ的垂直平分線是否過定點?若過,求出定點坐標;若不過,請說明理由;(2)過點P作垂線交拋物線C于另一點M,若切線的斜率為k,設(shè)的面積為S,求的最小值20.(12分)橢圓:()的離心率為,遞增直線過橢圓的左焦點,且與橢圓交于兩點,若,求直線的斜率.21.(12分)已知各項均為正數(shù)的等比數(shù)列{}的前4項和為15,且.(1)求{}的通項公式;(2)若,記數(shù)列{}前n項和為,求.22.(10分)等差數(shù)列中,首項,且成等比數(shù)列(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用前項積與通項的關(guān)系可求得結(jié)果.【詳解】由已知可得.故選:C.2、A【解析】分離參數(shù),求函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)有兩個零點可知函數(shù)的單調(diào)性,即可求解.【詳解】由題意得有兩個零點令,則且所以,在上為增函數(shù),可得,當,在上單調(diào)遞減,可得,即要有兩個零點有兩個零點,實數(shù)的取值范圍是.故選:A【點睛】方法點睛:已知函數(shù)有零點求參數(shù)取值范圍常用的方法和思路(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解3、D【解析】由復(fù)數(shù)的乘方運算求,再求模即可.【詳解】由題設(shè),,故2.故選:D4、C【解析】根據(jù)給定條件利用等差數(shù)列前n項和公式列式計算即可作答.【詳解】依題意,層塔從上層到下層掛燈盞數(shù)依次排成一列可得等差數(shù)列,,于是得,解得,,所以塔的底層共有燈盞.故選:C5、B【解析】根據(jù)題意求出,結(jié)合余弦定理分情況討論即可.【詳解】解:因為,所以.由題意得,利用余弦定理得:.當,即時,,即,解得:.此時三角形為等邊三角形;當,即時,,不成立.所以三角形的形狀是等邊三角形.故選:B.【點睛】本題主要考查利用余弦定理判斷三角形的形狀,屬于基礎(chǔ)題.6、B【解析】結(jié)合橢圓、雙曲線、拋物線的圖像,分別對①②③④分析m、n的正負,即可得到答案.【詳解】對于①:由雙曲線的圖像可知:;由拋物線的圖像可知:同號,矛盾.故①錯誤;對于②:由雙曲線的圖像可知:;由拋物線的圖像可知:異號,符合要求.故②成立;對于③:由橢圓的圖像可知:;由拋物線的圖像可知:同號,且拋物線的焦點在x軸上,符合要求.故③成立;對于④:由橢圓的圖像可知:;由拋物線的圖像可知:同號,且拋物線的焦點在x軸上,矛盾.故④錯誤;故選:B7、B【解析】求出,可知為等腰三角形,取的中點,可得出,利用勾股定理求得,利用三角形的面積公式可求得結(jié)果.【詳解】在橢圓中,,,則,所以,,由橢圓的定義可得,取的中點,因為,則,由勾股定理可得,所以,.故選:B.8、C【解析】根據(jù)給定條件利用分層抽樣的抽樣比直接計算作答.【詳解】依題意,三年級學(xué)生的總?cè)藬?shù)為,從1500人中用分層隨機抽樣抽取容量為300的樣本的抽樣比為,所以應(yīng)抽取的三年級學(xué)生的人數(shù)為.故選:C9、A【解析】利用三次函數(shù)的單調(diào)性,通過其導(dǎo)數(shù)進行研究,求出導(dǎo)數(shù),利用其導(dǎo)數(shù)恒大于0即可解決問題【詳解】∵∴∵函數(shù)是上的單調(diào)增函數(shù)∴在上恒成立∴,即.∴故選A.【點睛】可導(dǎo)函數(shù)在某一區(qū)間上是單調(diào)函數(shù),實際上就是在該區(qū)間上(或)(在該區(qū)間的任意子區(qū)間都不恒等于0)恒成立,然后分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值問題,從而獲得參數(shù)的取值范圍,本題是根據(jù)相應(yīng)的二次方程的判別式來進行求解.10、B【解析】利用等差數(shù)列的性質(zhì)求解即可.【詳解】解:由等差數(shù)列的性質(zhì)得.故選:B11、D【解析】根據(jù)給定條件求出各餐館總好評率,再比較大小作答.【詳解】餐館甲的總好評率為:,餐館乙的總好評率為:,餐館丙的好評率為:,餐館丁的好評率為:,顯然,所以餐館丁的總好評率最高.故選:D12、B【解析】求得圓的圓心關(guān)于直線的對稱點,由此求得對稱圓的方程.【詳解】設(shè)圓的圓心關(guān)于直線的對稱點為,則,所以對稱圓的方程為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、相交【解析】把兩個圓的方程化為標準方程,分別找出兩圓的圓心坐標和半徑,利用兩點間的距離公式求出兩圓心的距離,與半徑和與差的關(guān)系比較即可知兩圓位置關(guān)系.【詳解】化為,化為,則兩圓圓心分別為:,,半徑分別為:,圓心距為,,所以兩圓相交.故答案為:相交.14、##【解析】直接根據(jù)概率和為1計算得到答案.【詳解】.故答案為:.15、0【解析】設(shè)切點分別為,.利用導(dǎo)數(shù)的幾何意義可得,則.由,,計算可得,進而求得點坐標代入方程即可求得結(jié)果.【詳解】設(shè)切點分別為,由題意可得,則,即因為,,所以,即,解得,所以,則,解得故答案為:016、【解析】分別對,分別大于1,等于1,小于1的討論,即可.【詳解】對,分別大于1,等于1,小于1的討論,當,解得當,不存在,當時,,解得,故x的范圍為點睛】本道題考查了分段函數(shù)問題,分類討論,即可,難度中等三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,分別求出向量和,證明即可;(2)先求出和平面的法向量,然后利用公式求出,則直線與平面所成角的正弦值即為.【小問1詳解】證明:∵,,∴△≌△,∴,設(shè),在△中,由余弦定理得,即,則,即,,連接交于點,分別以,為軸、軸,過作軸,建立如圖空間直角坐標系,則,,,,,,的中點,則,,∵,∴.【小問2詳解】由(1)可知,,,,設(shè)平面的法向量為,則,即,令,則,即,則,記直線與平面所成角為,.18、(1)在上單調(diào)遞減,在上單調(diào)遞增(2)【解析】(1)研究當時的導(dǎo)數(shù)的符號即可討論得到的單調(diào)性;(2)對原函數(shù)求導(dǎo),對a的范圍分類討論即可得出答案.【小問1詳解】當時,,令,則,所以在上單調(diào)遞增.又因為,所以當時,,當時,,所以在上單調(diào)遞減,在上單調(diào)遞增.【小問2詳解】,且.①當時,由(1)可知當時,所以在上單調(diào)遞增,則,符合題意.②當時,,不符合題意,舍去.③當時,令,則,則,,當時,,所以在上單調(diào)遞減,當時,,不符合題意,舍去.綜上,a的取值范圍為.【點睛】導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識點,對導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個角度進行:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結(jié)合思想的應(yīng)用19、(1)線段的垂直平分線過定點(2)【解析】(1)設(shè)切線的方程為,并與拋物線方程聯(lián)立,利用判別式求得點坐標,進而求得點坐標,從而求得線段的垂直平分線的方程,進而求得定點坐標.(2)結(jié)合弦長公式求得的面積,利用基本不等式求得的最小值.【小問1詳解】依題意可知切線的斜率存在,且斜率大于.設(shè)直線PQ的方程為,.由消去并化簡得,由得,,則,解得,所以,在中,令得,所以,PQ中點為,所以線段PQ的中垂線方程為,即,所以線段的垂直平分線過定點.【小問2詳解】由(1)可知,直線PM的方程為,即.由消去并化簡得:,所以,而,所以得,,,.所以的面積,所以.當且僅當時等號成立.所以的最小值為.20、1【解析】根據(jù)離心率寫出,設(shè)出直線為,把直線的方程與橢圓進行聯(lián)立消,寫出韋達定理,再利用,即可解出,進而求出直線的斜率.【詳解】,.設(shè)遞增直線的方程為,把直線的方程與橢圓進行聯(lián)立:.①,②.③.把③代入①中得④.把④代入②中得...21、(1)(2)【解析】(1)設(shè)正項的等比數(shù)列的公比為,根據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版工程清包合同:工程設(shè)計變更與施工方案調(diào)整
- 2024某企業(yè)與咨詢公司之間的管理咨詢服務(wù)合同
- 2025年度香菇食品產(chǎn)品線擴展與市場拓展合同3篇
- 二零二五版智慧交通系統(tǒng)開發(fā)與技術(shù)支持協(xié)議2篇
- 二零二五版二手房買賣合同公證與節(jié)能環(huán)保改造服務(wù)協(xié)議2篇
- 2025年度跨國企業(yè)集團財務(wù)合并報表編制合同3篇
- 2024年銷售代理協(xié)議(意向)3篇
- 個性化活動策劃方案協(xié)議2024規(guī)格版A版
- 2024版地暖安裝工程承包合同書
- 2024版企業(yè)業(yè)務(wù)外包人員協(xié)議模板版B版
- 前列腺增生藥物治療
- 人工智能知識圖譜(歸納導(dǎo)圖)
- 滴滴補貼方案
- 民宿建筑設(shè)計方案
- 干部基本信息審核認定表
- 2023年11月外交學(xué)院(中國外交培訓(xùn)學(xué)院)2024年度公開招聘24名工作人員筆試歷年高頻考點-難、易錯點薈萃附答案帶詳解
- 春節(jié)行車安全常識普及
- 電機維護保養(yǎng)專題培訓(xùn)課件
- 汽車租賃行業(yè)利潤分析
- 春節(jié)拜年的由來習(xí)俗來歷故事
- 2021火災(zāi)高危單位消防安全評估導(dǎo)則
評論
0/150
提交評論