


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一個(gè)基于圖卷積神經(jīng)網(wǎng)絡(luò)的局部密度優(yōu)化方法(文Density-basedclusteringisawidelyusedtechniqueindataminingandmachinelearning.However,traditionaldensity-basedclusteringmethodsmayfailtocapturecomplexspatialpatternsinthedata,especiallywheninvolvinghigh-dimensionalfeatures.Inthispaper,weproposealocaldensityoptimizationmethodbasedongraphconvolutionalneuralnetworks(GCNNs).TheproposedmethodutilizesthepowerofGCNNstolearnahierarchicalrepresentationofthedata,andoptimizesthelocaldensitybyincorporatingthelearnedfeaturerepresentation.Experimentalresultsonseveralreal-worlddatasetsindicatethatourproposedmethodoutperformsexistingdensity-basedclusteringtechniquesintermsofclusteringaccuracyandrobustness.Density-basedclusteringisafundamentaltechniqueinunsupervisedlearningthathasbeenextensivelystudiedandappliedinvariousdomains,suchasimagesegmentation,communitydetection,andanomalydetection.Thebasicideaofdensity-basedclusteringistogroupdatapointsthatareclosetogetherinthedensityspace,whileseparatingthosethatarefarapart.Theadvantagesofdensity-basedclusteringmethodsincludetheirabilitytohandlearbitrary-shapedclustersandnoisydata,andtheirrobustnesstooutliers.However,traditionaldensity-basedclusteringmethodsmayfailtocapturecomplexspatialpatternsinthedata,especiallywheninvolvinghigh-dimensionalfeatures.Moreover,theperformanceofdensity-basedclusteringmethodsheavilyreliesonthedefinitionofthelocaldensityandthechoiceofthedistancemetric.Recently,deeplearninghasdemonstratedremarkablesuccessinawiderangeofmachinelearningtasks,includingclustering.Inparticular,graphconvolutionalneuralnetworks(GCNNs)havegainedincreasingattentionduetotheirabilitytolearnrepresentationsofgraph-structureddata.GCNNsextendthetraditionalconvolutionoperationtothegraphdomainandallowthemodeltocapturelocalandglobalfeaturesofthegraph.Therefore,GCNNsarewell-suitedfordealingwithhigh-dimensionalandcomplexdata.Motivatedbytheadvantagesofdensity-basedclusteringandthepowerofGCNNs,weproposealocaldensityoptimizationmethodbasedonGCNNs.Specifically,ourmethodutilizesthelearnedfeaturerepresentationbyGCNNstooptimizethelocaldensityestimation,whichinturnimprovestheclusteringquality.Ourproposedmethodconsistsoftwostages:featurelearningbyGCNNsandlocaldensityoptimization.Inthefirststage,weuseaGCNNtolearnahierarchicalrepresentationofthedata.AGCNNtakesasinputagraphwithnodefeaturesandlearnsasetoffiltersthatextractlocalandglobalfeaturesofthegraph.TheoutputoftheGCNNisanewsetofnodefeaturesthatbetterrepresenttherelationshipsbetweennodesinthegraph.Thelearnedfeaturerepresentationisthenusedinthesecondstagetooptimizethelocaldensityestimation.Inthesecondstage,weusethelearnedfeaturerepresentationtoestimatethelocaldensityofeachdatapoint.Specifically,wedefineakernelfunctionthatmeasuresthesimilaritybetweentwodatapointsinthelearnedfeaturespace.Weusethiskernelfunctiontocomputethelocaldensityofeachdatapointbasedonitsneighboringpoints.Thelocaldensityisthenoptimizedbyagradientdescentalgorithm,whichaimstominimizealossfunctionthatpenalizesthedifferencebetweentheestimatedandtruelocaldensities.Weevaluatetheperformanceofourproposedmethodonseveralreal-worlddatasets,includingtheMNISThandwrittendigitsdataset,theCIFAR-10imagedataset,andtheUCIadultincomedataset.Wecompareourmethodagainsttwostate-of-the-artdensity-basedclusteringmethods,namelyDBSCANandHDBSCAN.Experimentalresultsshowthatourproposedmethodachieveshigherclusteringaccuracyandrobustnessthanthetwobaselinemethodsonalldatasets.Inparticular,theproposedmethodoutperformsthebaselinemethodswhenthedatafeaturesarehigh-dimensionalorthedatacontaincomplexpatterns.Theproposedmethodisalsomorerobusttothechoiceofthedistancemetricandthedensityparameter.Inthispaper,wehaveproposedalocaldensityoptimizationmethodbasedongraphconvolutionalneuralnetworksfordensity-basedclustering.TheproposedmethodutilizesthepowerofGCNNstolearnahierarchicalrepresentationofthedataandoptimizesthelocaldensityestimationusingthelearnedfeatures.Experimentalresultsonseveralreal-worlddatasetsdemonstratethatourproposedmethodoutper
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 軟木墊片企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級(jí)戰(zhàn)略研究報(bào)告
- 鋁酸鹽企業(yè)縣域市場(chǎng)拓展與下沉戰(zhàn)略研究報(bào)告
- 頁巖黑企業(yè)ESG實(shí)踐與創(chuàng)新戰(zhàn)略研究報(bào)告
- 休閑男鞋企業(yè)縣域市場(chǎng)拓展與下沉戰(zhàn)略研究報(bào)告
- 紀(jì)錄片中“真實(shí)電影”的理論探索與創(chuàng)作實(shí)踐
- 基于精細(xì)化管理的B供電公司設(shè)備管理改善研究
- 應(yīng)變誘導(dǎo)VW124A合金超細(xì)晶及細(xì)化機(jī)制
- 化學(xué)-甘肅省2025屆高三下學(xué)期高考2月模擬卷試題和答案
- 供電企業(yè)合同范本
- 甘草種植技術(shù)課件
- 冀教版英語九年級(jí)Unit 5 單詞短語預(yù)習(xí)復(fù)習(xí)單
- 公司安全生產(chǎn)監(jiān)督管理辦法
- 鋼筋工工藝與實(shí)習(xí)(第二版)課件匯總?cè)珪娮咏贪竿暾嬲n件最全幻燈片(最新)課件電子教案幻燈片
- 煤礦從業(yè)人員考試題庫全答案(word版)
- 洞頂回填技術(shù)交底
- 最簡(jiǎn)易的帕累托圖制作方法簡(jiǎn)介PPT通用課件
- 城市軌道交通應(yīng)急處理課程標(biāo)準(zhǔn)
- 初二下分式混合計(jì)算練習(xí)1(附答案)
- (完整版)振幅調(diào)制與解調(diào)習(xí)題及其解答
- 抗震支架施工安裝合同
評(píng)論
0/150
提交評(píng)論