版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆福建省莆田四中、莆田六中高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知過(guò)點(diǎn)的直線與圓相切,且與直線平行,則()A.2 B.1C. D.2.已知:,直線l:,M為直線l上的動(dòng)點(diǎn),過(guò)點(diǎn)M作的切線MA,MB,切點(diǎn)為A,B,則四邊形MACB面積的最小值為()A.1 B.2C. D.43.已知數(shù)列滿足,則()A. B.1C.2 D.44.在平面直角坐標(biāo)系中,直線+的傾斜角是()A. B.C. D.5.已知向量,則“”是“”的()A充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.已知橢圓的左焦點(diǎn)為,右頂點(diǎn)為,點(diǎn)在橢圓上,且軸,直線交軸于點(diǎn).若,則橢圓的離心率是A. B.C. D.7.曲線上存在兩點(diǎn)A,B到直線到距離等于到的距離,則()A.12 B.13C.14 D.158.已知向量,,且,則實(shí)數(shù)等于()A1 B.2C. D.9.在等比數(shù)列中,,,則等于()A.90 B.30C.70 D.4010.已知p:,q:,那么p是q的()A.充要條件 B.必要不充分條件C.充分不必要條件 D.既不充分也不必要條件11.已知全集,,()A. B.C. D.12.函數(shù)的大致圖象是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的離心率為__________14.如圖所示的是一個(gè)正方體的平面展開圖,,則在原來(lái)的正方體中,直線與平面所成角的正弦值為___________.15.已知函數(shù)在點(diǎn)處的切線為直線l,則l與坐標(biāo)軸圍成的三角形面積為___________.16.已知等差數(shù)列中,,,則______________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知?jiǎng)訄A過(guò)定點(diǎn),且與直線相切.(1)求動(dòng)圓圓心的軌跡的方程;(2)直線過(guò)點(diǎn)與曲線相交于兩點(diǎn),問(wèn):在軸上是否存在定點(diǎn),使?若存在,求點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.18.(12分)已知數(shù)列為各項(xiàng)均為正數(shù)的等比數(shù)列,若(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和19.(12分)在中,內(nèi)角的對(duì)邊分別是,且(1)求角的大?。?)若,且,求的面積20.(12分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.21.(12分)如圖,在四棱錐中中,平面ABCD,底面ABCD是邊長(zhǎng)為2的正方形,.(1)求證:平面;(2)求二面角的平面角的余弦值.22.(10分)已知數(shù)列的前n項(xiàng)和為,且.(1)求的通項(xiàng)公式;.(2)求數(shù)列的前n項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】先根據(jù)垂直關(guān)系設(shè)切線方程,再根據(jù)圓心到切線距離等于半徑列式解得結(jié)果.【詳解】因?yàn)榍芯€與直線平行,所以切線方程可設(shè)為因?yàn)榍芯€過(guò)點(diǎn)P(2,2),所以因?yàn)榕c圓相切,所以故選:C2、B【解析】易知四邊形MACB的面積為,然后由最小,根據(jù)與直線l:垂直求解.【詳解】:化為標(biāo)準(zhǔn)方程為:,由切線長(zhǎng)得:,四邊形MACB的面積為,若四邊形MACB的面積最小,則最小,此時(shí)與直線l:垂直,所以,所以四邊形MACB面積的最小值,故選:B3、B【解析】根據(jù)遞推式以及迭代即可.【詳解】由,得,,,,,,.故選:B4、B【解析】由直線方程得斜率,從而得傾斜角【詳解】由直線方程知直角斜率為,在上正切值為1的角為,即為傾斜角故選:B5、A【解析】根據(jù)得出,根據(jù)充分必要條件的定義可判斷.【詳解】解:∵,向量,,∴,即,根據(jù)充分必要條件的定義可判斷:“”是“”的充分不必要條件,故選:A.6、D【解析】由于BF⊥x軸,故,設(shè),由得,選D.考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)7、D【解析】由題可知A,B為半圓C與拋物線的交點(diǎn),利用韋達(dá)定理及拋物線的定義即求.【詳解】由曲線,可得,即,為圓心為,半徑為7半圓,又直線為拋物線的準(zhǔn)線,點(diǎn)為拋物線的焦點(diǎn),依題意可知A,B為半圓C與拋物線的交點(diǎn),由,得,設(shè),則,,∴.故選:D.8、C【解析】利用空間向量垂直的坐標(biāo)表示計(jì)算即可得解【詳解】因向量,,且,則,解得,所以實(shí)數(shù)等于.故選:C9、D【解析】根據(jù)等比數(shù)列的通項(xiàng)公式即可求出答案.【詳解】設(shè)該等比數(shù)列的公比為q,則,則.故選:D10、C【解析】若p成立則q成立且若q成立不能得到p一定成立,p是q充分不必要條件.【詳解】因?yàn)?gt;0,<1,所以若p:成立,一定成立,但q:成立,p:不一定成立,所以p是q的充分不必要條件.故選:C.11、C【解析】根據(jù)條件可得,則,結(jié)合條件即可得答案.【詳解】因,所以,則,又,所以,即.故選:C12、A【解析】由得出函數(shù)是奇函數(shù),再求得,,運(yùn)用排除法可得選項(xiàng).【詳解】法一:由函數(shù),則,所以函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱,所以排除B;因?yàn)椋耘懦鼶;因?yàn)椋耘懦鼵,故選:A.【點(diǎn)睛】思路點(diǎn)睛:函數(shù)圖象的辨識(shí)可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢(shì);(3)從函數(shù)的奇偶性,判斷圖象的對(duì)稱性;(4)從函數(shù)的特征點(diǎn),排除不合要求的圖象.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】∵雙曲線的方程為∴,∴∴故答案為14、【解析】將展開圖還原成正方體,通過(guò)建系利用空間向量的知識(shí)求解.【詳解】將展開圖還原成正方體,以A為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,,,,,.則.設(shè)平面的法向量為,由令,則,所以直線與平面所成角的正弦值為.故答案為:15、【解析】先求出切線方程,分別得到直線與x、y軸交點(diǎn),即可求出三角形的面積.【詳解】由函數(shù)可得:函數(shù),所以,.所以切線l:,即.令,得到;令,得到;所以l與坐標(biāo)軸圍成的三角形面積為.故答案為:.16、【解析】設(shè)等差數(shù)列的公差為,依題意得到方程,求出公差,再根據(jù)等差數(shù)列通項(xiàng)公式計(jì)算可得;【詳解】解:設(shè)等差數(shù)列的公差為,因?yàn)?,,所以,所以,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)存在,.【解析】(1)利用兩點(diǎn)間的距離公式和直線與圓相切的性質(zhì)即可得出;(2)假設(shè)存在點(diǎn),滿足題設(shè)條件,設(shè)直線的方程,根據(jù)韋達(dá)定理即可求出點(diǎn)的坐標(biāo)【小問(wèn)1詳解】設(shè)動(dòng)圓的圓心,依題意:化簡(jiǎn)得:,即為動(dòng)圓的圓心的軌跡的方程【小問(wèn)2詳解】假設(shè)存在點(diǎn),滿足條件,使①,顯然直線斜率不為0,所以由直線過(guò)點(diǎn),可設(shè),由得設(shè),,,,則,由①式得,,即消去,,得,即,,,存在點(diǎn)使得18、(1)(2)【解析】(1)利用等比數(shù)列通項(xiàng)公式列出方程組,可求解,,從而寫出;(2)化簡(jiǎn)數(shù)列,裂項(xiàng)相消法求和即可.【小問(wèn)1詳解】設(shè)數(shù)列的公比為,∵,∴,即①∵,∴②②÷①,解得∴∴【小問(wèn)2詳解】∵,∴∴∴19、(1);(2)【解析】(1)根據(jù),通過(guò)余弦定理求解.(2)根據(jù),通過(guò)正弦定理,把角轉(zhuǎn)化為邊得,再根據(jù),得.再代入的面積公式求解.【詳解】(1)∵,∴由余弦定理得,又,∴.(2)∵,∴由正弦定理得,∵,∴,又,∴∴面積【點(diǎn)睛】本題主要考查余弦定理和正弦定理的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.20、(Ⅰ)證明見解析;(Ⅱ)【解析】(Ⅰ)證明,根據(jù)得到,得到證明.(Ⅱ)如圖所示,分別以為軸建立空間直角坐標(biāo)系,平面的法向量,,計(jì)算向量夾角得到答案.【詳解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如圖所示:分別以為軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量,則,即,取得到,,設(shè)直線與平面所成角為故.【點(diǎn)睛】本題考查了線面垂直,線面夾角,意在考查學(xué)生的空間想象能力和計(jì)算能力.21、(1)證明見解析(2)【解析】(1)根據(jù)平面得到,結(jié)合得到證明。(2)建立空間直角坐標(biāo)系,計(jì)算各點(diǎn)坐標(biāo),計(jì)算平面的法向量,根據(jù)向量的夾角公式得到答案?!拘?wèn)1詳解】由于平面,平面,所以,由于,又,所以平面【小問(wèn)2詳解】?jī)蓛纱怪?,建立如圖所示空間直角坐標(biāo)系,,,,,,設(shè)平面的一個(gè)法向量為設(shè)平面的一個(gè)法向量為,由,得,故可
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高中技術(shù)會(huì)考模擬試卷(二)
- 《桃花源記》說(shuō)課稿17篇
- 南京工業(yè)大學(xué)浦江學(xué)院《自動(dòng)化專業(yè)綜合實(shí)訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 南京工業(yè)大學(xué)浦江學(xué)院《生態(tài)文學(xué)欣賞》2021-2022學(xué)年第一學(xué)期期末試卷
- 某熱源集中供熱工程施工組織設(shè)計(jì)投標(biāo)版
- dtnl說(shuō)課稿部編版
- 《長(zhǎng)方體的認(rèn)識(shí)》說(shuō)課稿
- 《小數(shù)乘整數(shù)》說(shuō)課稿
- 南京工業(yè)大學(xué)浦江學(xué)院《概率論與數(shù)理統(tǒng)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 南京工業(yè)大學(xué)《住宅室內(nèi)設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷
- 醫(yī)學(xué)與大數(shù)據(jù):信息技術(shù)在醫(yī)療中的應(yīng)用
- 2024年室內(nèi)裝飾設(shè)計(jì)師(高級(jí)工)考試復(fù)習(xí)題庫(kù)(含答案)
- 教育培訓(xùn)行業(yè)2024年生產(chǎn)與制度改革方案
- PCB文字噴印工藝
- 2024年廖俊波同志先進(jìn)事跡心得體會(huì)教師4篇
- 高考物理系統(tǒng)性復(fù)習(xí) (能力提高練) 第五節(jié) 實(shí)驗(yàn):探究小車速度隨時(shí)間變化的規(guī)律(附解析)
- 眼科護(hù)理中的孕婦與產(chǎn)婦護(hù)理
- 業(yè)主業(yè)主委員會(huì)通用課件
- 了解金融市場(chǎng)和金融產(chǎn)品
- 南京理工大學(xué)2015年613物理化學(xué)(含答案)考研真題
- 初中數(shù)學(xué)應(yīng)用題解題思路分享
評(píng)論
0/150
提交評(píng)論