2024屆河北邢臺(tái)市高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第1頁
2024屆河北邢臺(tái)市高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第2頁
2024屆河北邢臺(tái)市高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第3頁
2024屆河北邢臺(tái)市高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第4頁
2024屆河北邢臺(tái)市高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆河北邢臺(tái)市高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),則有()A. B.C. D.2.已知拋物線,過點(diǎn)作拋物線的兩條切線,點(diǎn)為切點(diǎn).若的面積不大于,則的取值范圍是()A. B.C. D.3.已知橢圓=1(a>b>0)的右焦點(diǎn)為F,橢圓上的A,B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,|FA|=2|FB|,且·≤a2,則該橢圓離心率的取值范圍是()A.(0,] B.(0,]C.,1) D.,1)4.中共一大會(huì)址、江西井岡山、貴州遵義、陜西延安是中學(xué)生的幾個(gè)重要的研學(xué)旅行地.某中學(xué)在校學(xué)生人,學(xué)校團(tuán)委為了了解本校學(xué)生到上述紅色基地研學(xué)旅行的情況,隨機(jī)調(diào)查了名學(xué)生,其中到過中共一大會(huì)址或井岡山研學(xué)旅行的共有人,到過井岡山研學(xué)旅行的人,到過中共一大會(huì)址并且到過井岡山研學(xué)旅行的恰有人,根據(jù)這項(xiàng)調(diào)查,估計(jì)該學(xué)校到過中共一大會(huì)址研學(xué)旅行的學(xué)生大約有()人A. B.C. D.5.設(shè)是等差數(shù)列的前n項(xiàng)和,若,,則()A.26 B.-7C.-10 D.-136.設(shè),向量,,,且,,則()A. B.C.3 D.47.已知等差數(shù)列為其前項(xiàng)和,且,且,則()A.36 B.117C. D.138.觀察數(shù)列,(),,()的特點(diǎn),則括號(hào)中應(yīng)填入的適當(dāng)?shù)臄?shù)為()A. B.C. D.9.已知等比數(shù)列,且,則()A.16 B.32C.24 D.6410.如圖,在平行六面體中,,則與向量相等的是()A. B.C. D.11.已知點(diǎn)在橢圓上,與關(guān)于原點(diǎn)對(duì)稱,,交軸于點(diǎn),為坐標(biāo)原點(diǎn),,則橢圓離心率為()A. B.C. D.12.直線與直線的位置關(guān)系是()A.相交但不垂直 B.平行C.重合 D.垂直二、填空題:本題共4小題,每小題5分,共20分。13.已知直線過拋物線的焦點(diǎn),且與的對(duì)稱軸垂直,與交于,兩點(diǎn),,為的準(zhǔn)線上一點(diǎn),則的面積為________14.已知球的表面積為,則該球的體積為______.15.已知雙曲線M的中心在原點(diǎn),以坐標(biāo)軸為對(duì)稱軸.從以下三個(gè)條件中任選兩個(gè)條件,并根據(jù)所選條件求雙曲線M的標(biāo)準(zhǔn)方程.①一個(gè)焦點(diǎn)坐標(biāo)為;②經(jīng)過點(diǎn);③離心率為.你選擇的兩個(gè)條件是___________,得到的雙曲線M的標(biāo)準(zhǔn)方程是___________.16.過點(diǎn)的直線與拋物線相交于,兩點(diǎn),,則直線的方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列{}滿足a1=1,a3+a7=18,且(n≥2)(1)求數(shù)列{}的通項(xiàng)公式;(2)若=·,求數(shù)列的前n項(xiàng)和18.(12分)已知函數(shù).(1)討論函數(shù)的單調(diào)性;(2)若函數(shù)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.19.(12分)如圖,在四棱錐中,底面ABCD是邊長為2的正方形,為正三角形,且側(cè)面底面ABCD,(1)求證:平面ACM;(2)求平面MBC與平面DBC的夾角的大小20.(12分)設(shè)分別為橢圓的左右焦點(diǎn),過的直線l與橢圓C相交于A,B兩點(diǎn),直線的傾斜角為60度,到直線l的距離為(1)求橢圓C的焦距;(2)如果,求橢圓C的方程21.(12分)如圖,在空間直角坐標(biāo)系中有長方體,且,,點(diǎn)E在棱AB上移動(dòng).(1)證明:;(2)當(dāng)E為AB的中點(diǎn)時(shí),求直線AC與平面所成角的正弦值.22.(10分)如圖,已知菱形ABCD的邊長為3,對(duì)角線,將△沿著對(duì)角線BD翻折至△的位置,使得,在平面ABCD上方存在一點(diǎn)M,且平面ABCD,(1)求證:平面平面ABD;(2)求點(diǎn)M到平面ABE的距離;(3)求二面角的正弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】利用作差法計(jì)算與比較大小即可求解.【詳解】因?yàn)?,,所以,所以,故選:A.2、C【解析】由題意,設(shè),直線方程為,則由點(diǎn)到直線的距離公式求出點(diǎn)到直線的距離,再聯(lián)立直線與拋物線方程,由韋達(dá)定理及弦長公式求出,進(jìn)而可得,結(jié)合即可得答案.【詳解】解:因?yàn)閽佄锞€的性質(zhì):在拋物線上任意一點(diǎn)處的切線方程為,設(shè),所以在點(diǎn)處的切線方程為,在點(diǎn)B處的切線方程為,因?yàn)閮蓷l切線都經(jīng)過點(diǎn),所以,,所以直線的方程為,即,點(diǎn)到直線的距離為,聯(lián)立直線與拋物線方程有,消去得,由得,,由韋達(dá)定理得,所以弦長,所以,整理得,即,解得,又所以.故選:C.3、B【解析】如圖設(shè)橢圓的左焦點(diǎn)為E,根據(jù)題意和橢圓的定義可知,利用余弦定理求出,結(jié)合平面向量的數(shù)量積計(jì)算即可.【詳解】由題意知,如圖,設(shè)橢圓的左焦點(diǎn)為E,則,因?yàn)辄c(diǎn)A、B關(guān)于原點(diǎn)對(duì)稱,所以四邊形為平行四邊形,由,得,,在中,,所以,由,得,整理,得,又,所以.故選:B4、B【解析】作出韋恩圖,設(shè)調(diào)查的學(xué)生中去過中共一大會(huì)址研學(xué)旅行的學(xué)生人數(shù)為,根據(jù)題意求出的值,由此可得出該學(xué)校到過中共一大會(huì)址研學(xué)旅行的學(xué)生人數(shù).【詳解】如下圖所示,設(shè)調(diào)查的學(xué)生中去過中共一大會(huì)址研學(xué)旅行的學(xué)生人數(shù)為,由題意可得,解的,因此,該學(xué)校到過中共一大會(huì)址研學(xué)旅行的學(xué)生的人數(shù)為.故選:B.【點(diǎn)睛】本題考查韋恩圖的應(yīng)用,同時(shí)也考查了利用分層抽樣求樣本容量,考查計(jì)算能力,屬于基礎(chǔ)題.5、C【解析】直接利用等差數(shù)列通項(xiàng)和求和公式計(jì)算得到答案.【詳解】,,解得,故.故選:C.6、C【解析】根據(jù)空間向量垂直與平行的坐標(biāo)表示,求得的值,得到向量,進(jìn)而求得,得到答案.【詳解】由題意,向量,,,因?yàn)椋傻?,解得,即,又因?yàn)?,可得,解得,即,可得,所?故選:C.7、B【解析】根據(jù)等差數(shù)列下標(biāo)的性質(zhì),,進(jìn)而根據(jù)條件求出,然后結(jié)合等差數(shù)列的求和公式和下標(biāo)性質(zhì)求得答案.【詳解】由題意,,即為遞增數(shù)列,所以,又,又,聯(lián)立方程組解得:.于是,.故選:B.8、D【解析】利用觀察法可得,即得.【詳解】由題可得數(shù)列的通項(xiàng)公式為,∴.故選:D9、A【解析】由等比數(shù)列的定義先求出公比,然后可解..【詳解】,得故選:A10、A【解析】根據(jù)空間向量的線性運(yùn)算法則——三角形法,準(zhǔn)確運(yùn)算,即可求解.【詳解】由題意,在平行六面體中,,可得.故選:A.11、B【解析】由,得到,結(jié)合,得到,進(jìn)而求得,得出,結(jié)合離心率的定義,即可求解.【詳解】設(shè),則,由,可得,所以,因?yàn)?,可得,又由,兩式相減得,即,即,又因?yàn)?,所以,即又由,所以,解?故選:B.12、C【解析】把直線化簡后即可判斷.【詳解】直線可化為,所以直線與直線的位置關(guān)系是重合.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先設(shè)出拋物線方程,寫出準(zhǔn)線方程和焦點(diǎn)坐標(biāo),利用得到拋物線方程,再利用三角形的面積公式進(jìn)行求解.【詳解】設(shè)拋物線的方程為,則焦點(diǎn)為,準(zhǔn)線方程為,由題意,得,,,所以,解得,所以.故答案為:.14、【解析】設(shè)球半徑為,由球表面積求出,然后可得球的體積【詳解】設(shè)球半徑為,∵球的表面積為,∴,∴,∴該球的體積為故答案為【點(diǎn)睛】解答本題的關(guān)鍵是熟記球的表面積和體積公式,解題時(shí)由條件求得球的半徑后可得所求結(jié)果15、①.①②或①③或②③②.或或【解析】選①②,根據(jù)焦點(diǎn)坐標(biāo)及頂點(diǎn)坐標(biāo)直接求解,選①③,根據(jù)焦點(diǎn)坐標(biāo)及離心率求出即可得解,選②③,可由頂點(diǎn)坐標(biāo)及離心率得出,即可求解.【詳解】選①②,由題意則,,,雙曲線的標(biāo)準(zhǔn)方程為,故答案為:①②;,選①③,由題意,,,,雙曲線的標(biāo)準(zhǔn)方程為,選②③,由題意知,,,雙曲線的標(biāo)準(zhǔn)方程為.故答案為:①②;或①③;或②③;.16、##【解析】根據(jù)拋物線方程可得焦點(diǎn)坐標(biāo),進(jìn)而點(diǎn)P為拋物線的焦點(diǎn),設(shè),利用拋物線的定義可得,有軸,即可得出結(jié)果.【詳解】由題意知,拋物線的焦點(diǎn)坐標(biāo),又,所以點(diǎn)P為拋物線的焦點(diǎn),設(shè),由,由拋物線的定義得,解得,所以AB垂直與x軸,所以直線AB的方程為:.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由等差中項(xiàng)可知數(shù)列是等差數(shù)列,根據(jù)已知可求得其公差,從而可得其通項(xiàng)公式;(2)分析可知應(yīng)用錯(cuò)位相減法求數(shù)列的和【詳解】(1)由知,數(shù)列是等差數(shù)列,設(shè)其公差為,則,所以,,即數(shù)列的通項(xiàng)公式為(2),,,兩式相減得:,整理得:,所以18、(1)答案見解析(2)【解析】(1)求函數(shù)的定義域及導(dǎo)函數(shù),根據(jù)導(dǎo)數(shù)與函數(shù)的單調(diào)性關(guān)系判斷函數(shù)的單調(diào)性;(2)結(jié)合已知條件,根據(jù)函數(shù)的單調(diào)性,極值結(jié)合零點(diǎn)存在性定理列不等式求實(shí)數(shù)的取值范圍.【小問1詳解】的定義域?yàn)?,?dāng)時(shí),恒成立,上單調(diào)遞增,當(dāng)時(shí),在遞減,在遞增【小問2詳解】當(dāng)時(shí),恒成立,上單調(diào)遞增,所以至多存一個(gè)零點(diǎn),不符題意,故舍去.當(dāng)時(shí),在遞減,在遞增;所以有極小值為構(gòu)造函數(shù),恒成立,所以在單調(diào)遞減,注意到①當(dāng)時(shí),,則函數(shù)至多只有一個(gè)零點(diǎn),不符題意,舍去.②當(dāng)時(shí),函數(shù)圖象連續(xù)不間斷,的極小值為,又函數(shù)在單調(diào)遞減,所以在上存在唯一一個(gè)零點(diǎn);,令,構(gòu)造函數(shù),恒成立.在單調(diào)遞增,所以,即,所以函數(shù)在單調(diào)遞增,所以在上存在唯一一個(gè)零點(diǎn);當(dāng)時(shí),函數(shù)怡有兩個(gè)零點(diǎn),即在上各有一個(gè)零點(diǎn).綜上,函數(shù)有兩個(gè)不同的零點(diǎn),實(shí)數(shù)的取值范圍為.【點(diǎn)睛】函數(shù)零點(diǎn)的求解與判斷方法:(1)直接求零點(diǎn):令f(x)=0,如果能求出解,則有幾個(gè)解就有幾個(gè)零點(diǎn)(2)零點(diǎn)存在性定理:利用定理不僅要函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性)才能確定函數(shù)有多少個(gè)零點(diǎn)(3)利用圖象交點(diǎn)的個(gè)數(shù):將函數(shù)變形為兩個(gè)函數(shù)的差,畫兩個(gè)函數(shù)的圖象,看其交點(diǎn)的橫坐標(biāo)有幾個(gè)不同的值,就有幾個(gè)不同的零點(diǎn).19、(1)證明見解析(2)30°【解析】(1)連接BD,借助三角形中位線可證;(2)建立空間直角坐標(biāo)系,利用向量法直接可求.【小問1詳解】連接BD,與AC交于點(diǎn)O,在中,因?yàn)镺,M分別為BD,PD的中點(diǎn),則,又平面ACM,平面ACM,所以平面ACM.【小問2詳解】設(shè)E是AB的中點(diǎn),連接PE,因?yàn)闉檎切?,則,又因?yàn)槠矫娴酌鍭BCD,平面平面,則平面ABCD,過點(diǎn)E作EF平行于CB,與CD交于點(diǎn)F,以E為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系如圖所示,則,,,,,,所以,,設(shè)平面CBM的法向量為,則,令,則,因?yàn)槠矫鍭BCD,則平面ABCD的一個(gè)法向量為,所以,所以平面MBC與平面DBC所成角大小為30°20、(1)(2)【解析】(1)求得直線的方程,利用點(diǎn)到直線的距離列方程,由此求得,進(jìn)而求得焦距.(2)聯(lián)立直線的方程和橢圓方程,化簡寫出根與系數(shù)關(guān)系,結(jié)合來求得,從而求得橢圓的方程.【小問1詳解】依題意,直線的方程為,到的距離為,所以焦距.【小問2詳解】由,消去并化簡得,設(shè),則,,,,,所以,,,,,,,,,所以,所以橢圓的方程為.21、(1)證明見解析(2)【解析】(1)設(shè),求出,,利用向量法能求出;(2)求出平面的法向量,利用向量法能求出直線與平面所成角的正弦值【小問1詳解】證明:設(shè),,,,;【小問2詳解】當(dāng)為的中點(diǎn)時(shí),,,設(shè)平面的法向量,則,取,得,設(shè)直線與平面所成角為,則直線與平面所成角的正弦值為:22、(1)證明見解析;(2)1;(3).【解析】(1)過E作EO垂直于BD于O,連接AO,由勾股定義易得,由菱形的性質(zhì)有,再根據(jù)線面垂直、面面垂直的判定即可證結(jié)論.(2)構(gòu)建空間直角坐標(biāo)系,確定相關(guān)點(diǎn)的坐標(biāo),進(jìn)而求的坐標(biāo)及面ABE的法向量,應(yīng)用空間向量的坐標(biāo)運(yùn)算求點(diǎn)面距.(3)由(2)求得面MBA的法向量,結(jié)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論