版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆遼寧省重點(diǎn)名校數(shù)學(xué)高二上期末經(jīng)典試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)f(x)的圖象如圖所示,則導(dǎo)函數(shù)f(x)的圖象可能是()A. B.C. D.2.若圓C:上有到的距離為1的點(diǎn),則實(shí)數(shù)m的取值范圍為()A. B.C. D.3.已知直線過(guò)點(diǎn),且其方向向量,則直線的方程為()A. B.C. D.4.已知是等比數(shù)列,,,則()A. B.C. D.5.已知,,,若、、三個(gè)向量共面,則實(shí)數(shù)A3 B.5C.7 D.96.已知點(diǎn)P是圓上一點(diǎn),則點(diǎn)P到直線的距離的最大值為()A.2 B.C. D.7.若:,:,則為q的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分又不必要條件8.我國(guó)新冠肺炎疫情防控進(jìn)入常態(tài)化,各地有序進(jìn)行疫苗接種工作,下面是我國(guó)甲、乙兩地連續(xù)11天的疫苗接種指數(shù)折線圖,根據(jù)該折線圖,下列說(shuō)法不正確的是()A.這11天甲地指數(shù)和乙地指數(shù)均有增有減B.第3天至第11天,甲地指數(shù)和乙地指數(shù)都超過(guò)80%C.在這11天期間,乙地指數(shù)的增量大于甲地指數(shù)的增量D.第9天至第11天,乙地指數(shù)的增量大于甲地指數(shù)的增量9.下列說(shuō)法正確的個(gè)數(shù)有()個(gè)①在中,若,則②是,,成等比數(shù)列的充要條件③直線是雙曲線的一條漸近線④函數(shù)的導(dǎo)函數(shù)是,若,則是函數(shù)的極值點(diǎn)A.0 B.1C.2 D.310.已知函數(shù)的導(dǎo)數(shù)為,且,則()A. B.C.1 D.11.已知,分別為橢圓的左右焦點(diǎn),為坐標(biāo)原點(diǎn),橢圓上存在一點(diǎn),使得,設(shè)的面積為,若,則該橢圓的離心率為()A. B.C. D.12.函數(shù)單調(diào)減區(qū)間是()A. B.C.和 D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知底面為正方形且各側(cè)棱均相等的四棱錐可繞著任意旋轉(zhuǎn),平面,分別是的中點(diǎn),,,點(diǎn)在平面上的射影為點(diǎn),則當(dāng)最大時(shí),二面角的大小是________14.在等差數(shù)列中,,那么等于______.15.已知橢圓與雙曲線具有相同的焦點(diǎn),,且在第一象限交于點(diǎn),設(shè)橢圓和雙曲線的離心率分別為,,若,則的最小值為_(kāi)______.16.在棱長(zhǎng)為2的正方體中,點(diǎn)P是直線上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q在平面上,則的最小值為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列滿足,(1)設(shè),求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的前項(xiàng)和18.(12分)已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上,的面積為1.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)是拋物線上異于點(diǎn)的一點(diǎn),直線與直線交于點(diǎn),過(guò)作軸的垂線交拋物線于點(diǎn),求證:直線過(guò)定點(diǎn).19.(12分)公差不為0的等差數(shù)列中,,且成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前n項(xiàng)和為.若,求的取值范圍20.(12分)設(shè)函數(shù)(Ⅰ)求的單調(diào)區(qū)間;(Ⅱ)若,為整數(shù),且當(dāng)時(shí),恒成立,求的最大值.(其中為的導(dǎo)函數(shù).)21.(12分)已知函數(shù),其中,.(1)當(dāng)時(shí),求曲線在點(diǎn)處切線方程;(2)求函數(shù)的單調(diào)區(qū)間.22.(10分)如圖,在空間四邊形中,分別是的中點(diǎn),分別是上的點(diǎn),滿足.(1)求證:四點(diǎn)共面;(2)設(shè)與交于點(diǎn),求證:三點(diǎn)共線.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)導(dǎo)函數(shù)正負(fù)與原函數(shù)單調(diào)性關(guān)系可作答【詳解】原函數(shù)在上先減后增,再減再增,對(duì)應(yīng)到導(dǎo)函數(shù)先負(fù)再正,再負(fù)再正,且原函數(shù)在處與軸相切,故可知,導(dǎo)函數(shù)圖象為D故選:D2、C【解析】利用圓與圓的位置關(guān)系進(jìn)行求解即可.【詳解】將圓C的方程化為標(biāo)準(zhǔn)方程得,所以.因?yàn)閳AC上有到的距離為1的點(diǎn),所以圓C與圓:有公共點(diǎn),所以因?yàn)?,所以,解得,故選:C3、D【解析】根據(jù)題意和直線的點(diǎn)方向式方程即可得出結(jié)果.【詳解】因?yàn)橹本€過(guò)點(diǎn),且方向向量為,由直線的點(diǎn)方向式方程,可得直線的方程為:,整理,得.故選:D4、D【解析】由,,可求出公比,從而可求出等比數(shù)的通項(xiàng)公式,則可求出,得數(shù)列是一個(gè)等比數(shù)列,然后利用等比數(shù)的求和公式可求得答案【詳解】由題得.所以,所以.所以,所以數(shù)列是一個(gè)等比數(shù)列.所以=.故選:D5、A【解析】由空間向量共面原理得存在實(shí)數(shù),,使得,由此能求出實(shí)數(shù)【詳解】解:,,,、、三個(gè)向量共面,存在實(shí)數(shù),,使得,即有:,解得,,實(shí)數(shù)故選:【點(diǎn)睛】本題考查空間向量共面原理的應(yīng)用,屬于基礎(chǔ)題6、C【解析】求出圓心到直線的距離,由這個(gè)距離加上半徑即得【詳解】由圓,可得圓心坐標(biāo),半徑,則圓心C到直線的距離為,所以點(diǎn)P到直線l的距離的最大值為.故選:C7、D【解析】根據(jù)充分條件和必要條件的定義即可得出答案.【詳解】解:因?yàn)椋?,:,所以,所以為q的既不充分又不必要條件.故選:D.8、C【解析】由折線圖逐項(xiàng)分析得到答案.【詳解】對(duì)于選項(xiàng)A,從折線圖中可以直接觀察出甲地和乙地的指數(shù)有增有減,故選項(xiàng)A正確;對(duì)于選項(xiàng)B,從第3天至第11天,甲地指數(shù)和乙地指數(shù)都超過(guò)80%,故選項(xiàng)B正確;對(duì)于選項(xiàng)C,從折線圖上可以看出這11天甲的增量大于乙的增量,故選項(xiàng)C錯(cuò)誤;對(duì)于選項(xiàng)D,從折線圖上可以看出第9天至第11天,乙地指數(shù)的增量大于甲地指數(shù)的增量,故D正確;故選:C.9、B【解析】根據(jù)三角函數(shù)、等比數(shù)列、雙曲線和導(dǎo)數(shù)知識(shí)逐項(xiàng)分析即可求解.【詳解】①在中,則有,因,所以,又余弦函數(shù)在上單調(diào)遞減,所以,故①正確,②當(dāng)且時(shí),此時(shí),但是,,不成等比數(shù)列,故②錯(cuò)誤,③由雙曲線可得雙曲線的漸近線為,故③錯(cuò)誤,④“”是“是函數(shù)的極值點(diǎn)”的必要不充分條件,故④錯(cuò)誤.故選:B.10、B【解析】直接求導(dǎo),令求出,再將帶入原函數(shù)即可求解.【詳解】由得,當(dāng)時(shí),,解得,所以,.故選:B11、D【解析】由可得直角三角形,故,且,結(jié)合,聯(lián)立可得,即得解【詳解】由題意,故為直角三角形,,又,,又為直角三角形,故,,即,.故選:D.12、B【解析】根據(jù)函數(shù)求導(dǎo),然后由求解.【詳解】因?yàn)楹瘮?shù),所以,由,解得,所以函數(shù)的單調(diào)遞減區(qū)間是,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】先計(jì)算得到二面角的大小為60°,設(shè)二面角C-AB-O的大小為,則,計(jì)算得到答案.【詳解】解:由題可得,,因?yàn)榉謩e是的中點(diǎn),所以,,又,所以平面因?yàn)椋?所以二面角為,設(shè)二面角的大小為,即,則,在中,利用余弦定理得到:,故當(dāng)時(shí),取得最大值.故答案為:14、14【解析】根據(jù)等差數(shù)列的性質(zhì)得到,求得,再由,即可求解.【詳解】因?yàn)閿?shù)列為等差數(shù)列,且,根據(jù)等差數(shù)列的性質(zhì),可得,解答,又由.故答案為:14.15、【解析】由題意設(shè)焦距為,橢圓長(zhǎng)軸長(zhǎng)為,雙曲線實(shí)軸為,令在雙曲線的右支上,由已知條件結(jié)合雙曲線和橢圓的定義推出,由此能求出的最小值【詳解】由題意設(shè)焦距為,橢圓長(zhǎng)軸長(zhǎng)為,雙曲線實(shí)軸為,令在雙曲線的右支上,由雙曲線的定義,由橢圓定義,可得,,又,,可得,得,即,可得,則,當(dāng)且僅當(dāng),上式取得等號(hào),可得的最小值為故答案為:【點(diǎn)睛】本題考查橢圓和雙曲線的性質(zhì),主要是離心率,解題時(shí)要熟練掌握雙曲線、橢圓的定義,注意均值定理的合理運(yùn)用16、【解析】數(shù)形結(jié)合分析出的最小值為點(diǎn)到平面的距離,然后利用等體積法求出距離即可.【詳解】因?yàn)椋移矫?,平面,所以平面,所以的最小值為點(diǎn)到平面的距離,設(shè)到平面的距離為,則,所以,即,解得,故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2).【解析】(1)將變形為,得到為等比數(shù)列,(2)由(1)得到的通項(xiàng)公式,用錯(cuò)位相減法求得【詳解】(1)由,,可得,因?yàn)閯t,,可得是首項(xiàng)為,公比為的等比數(shù)列,(2)由(1),由,可得,,,上面兩式相減可得:,則【點(diǎn)睛】數(shù)列求和的方法技巧:(1)倒序相加:用于等差數(shù)列、與二項(xiàng)式系數(shù)、對(duì)稱性相關(guān)聯(lián)的數(shù)列的求和(2)錯(cuò)位相減:用于等差數(shù)列與等比數(shù)列的積數(shù)列的求和(3)分組求和:用于若干個(gè)等差或等比數(shù)列和或差數(shù)列的求和(4)裂項(xiàng)相消法:用于通項(xiàng)能變成兩個(gè)式子相減,求和時(shí)能前后相消的數(shù)列求和.18、(1)(2)證明見(jiàn)解析【解析】(1)由條件列方程求,由此可得拋物線方程;(2)方法一:聯(lián)立直線與拋物線方程,結(jié)合條件三點(diǎn)共線,可證明直線過(guò)定點(diǎn),方法二:聯(lián)立直線與拋物線方程,聯(lián)立直線與直線求,由垂直與軸列方程化簡(jiǎn),可證明直線過(guò)定點(diǎn).【小問(wèn)1詳解】因?yàn)辄c(diǎn)在拋物線上,所以,即,,因?yàn)椋式獾?,拋物線的標(biāo)準(zhǔn)方程為【小問(wèn)2詳解】設(shè)直線的方程為,由,得,所以,由(1)可知當(dāng)時(shí),,此時(shí)直線的方程為,若時(shí),因?yàn)槿c(diǎn)共線,所以,即,又因?yàn)?,,化?jiǎn)可得,又,進(jìn)而可得,整理得,因?yàn)樗?,此時(shí)直線的方程為,直線恒過(guò)定點(diǎn)又直線也過(guò)點(diǎn),綜上:直線過(guò)定點(diǎn)解法二:設(shè)方程,得若直線斜率存在時(shí)斜率方程為即解得:,于是有整理得.(*)代入上式可得所以直線方程為直線過(guò)定點(diǎn).若直線斜率不存在時(shí),直線方程為所以P點(diǎn)坐標(biāo)為,M點(diǎn)坐標(biāo)為此時(shí)直線方程為過(guò)點(diǎn)綜上:直線過(guò)定點(diǎn).【點(diǎn)睛】解決直線與拋物線的綜合問(wèn)題時(shí),要注意:(1)注意觀察應(yīng)用題設(shè)中的每一個(gè)條件,明確確定直線、拋物線的條件;(2)強(qiáng)化有關(guān)直線與拋物線聯(lián)立得出一元二次方程后的運(yùn)算能力,重視根與系數(shù)之間的關(guān)系、弦長(zhǎng)、斜率、三角形的面積等問(wèn)題19、(1)(2)【解析】(1)利用等比數(shù)列的定義以及等差數(shù)列的性質(zhì),列出方程即可得到答案;(2)先求出的通項(xiàng),再利用的單調(diào)性即可得到的最小值,從而求得的取值范圍【小問(wèn)1詳解】依題意,,,所以,設(shè)等差數(shù)列的公差為,則,解得,所以【小問(wèn)2詳解】,則數(shù)列是遞增數(shù)列,,所以,若,則.20、(Ⅰ)答案見(jiàn)解析;(Ⅱ).【解析】(Ⅰ)的定義域?yàn)?,,分和兩種情況解不等式和即可得單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間;(Ⅱ)由題意可得對(duì)于恒成立,分離可得,令,只需,利用導(dǎo)數(shù)求最小值即可求解.【詳解】(Ⅰ)函數(shù)的定義域?yàn)?,?dāng)時(shí),對(duì)于恒成立,此時(shí)函數(shù)在上單調(diào)遞增;當(dāng)時(shí),由可得;由可得;此時(shí)在上單調(diào)遞減,在上單調(diào)遞增;綜上所述:當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,當(dāng)時(shí),單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,(Ⅱ)若,由可得,因?yàn)?,所以,所以所以?duì)于恒成立,令,則,,令,則對(duì)于恒成立,所以在單調(diào)遞增,因?yàn)?,,所以在上存在唯一零點(diǎn),即,可得:,當(dāng)時(shí),,則,當(dāng)時(shí),,則,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,因?yàn)椋缘淖畲笾禐?【點(diǎn)睛】方法點(diǎn)睛:利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的方法:(1)確定函數(shù)的定義域;求導(dǎo)函數(shù),由(或)解出相應(yīng)的的范圍,對(duì)應(yīng)的區(qū)間為的增區(qū)間(或減區(qū)間);(2)確定函數(shù)的定義域;求導(dǎo)函數(shù),解方程,利用的根將函數(shù)的定義域分為若干個(gè)子區(qū)間,在這些子區(qū)間上討論的正負(fù),由符號(hào)確定在子區(qū)間上的單調(diào)性.21、(1);(2)答案見(jiàn)解析.【解析】(1)當(dāng)時(shí),,求出函數(shù)的導(dǎo)函數(shù),再求出,,再利用點(diǎn)斜式求出切線方程;(2)首先求出函數(shù)的導(dǎo)函數(shù),再對(duì)參數(shù)分類討論,求出函數(shù)的單調(diào)區(qū)間;【詳解】
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年銀川市鐵路職工醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫(kù)頻考點(diǎn)附帶答案
- 《鴻蒙機(jī)器人編程》1-ROS起源及特色 -教案
- 黨員個(gè)人思想?yún)R報(bào)半年總結(jié)
- 2025年統(tǒng)編版高中政治學(xué)考重點(diǎn)知識(shí)點(diǎn)歸納總結(jié)(復(fù)習(xí)必背)
- 招投標(biāo)項(xiàng)目現(xiàn)場(chǎng)管理培訓(xùn)
- 野生動(dòng)物救護(hù)游園施工合同
- 戶外運(yùn)動(dòng)公司法務(wù)聘用合同
- 臨時(shí)項(xiàng)目經(jīng)理聘用合同
- 城市道路養(yǎng)護(hù)車輛租賃合同
- 山地度假大院租賃合同
- 常用靜脈藥物溶媒的選擇
- 當(dāng)代西方文學(xué)理論知到智慧樹(shù)章節(jié)測(cè)試課后答案2024年秋武漢科技大學(xué)
- 2024年預(yù)制混凝土制品購(gòu)銷協(xié)議3篇
- 2024年中國(guó)陶瓷碗盆市場(chǎng)調(diào)查研究報(bào)告
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實(shí)踐指導(dǎo)材料之22:“8運(yùn)行-8.1運(yùn)行策劃和控制”(雷澤佳編制-2025B0)
- 單位網(wǎng)絡(luò)安全攻防演練
- 新交際英語(yǔ)(2024)一年級(jí)上冊(cè)Unit 1~6全冊(cè)教案
- 神經(jīng)外科基礎(chǔ)護(hù)理課件
- 2024中國(guó)儲(chǔ)備糧管理集團(tuán)限公司招聘700人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2024年度跨境電商平臺(tái)運(yùn)營(yíng)與孵化合同
- 2024年電動(dòng)汽車充電消費(fèi)者研究報(bào)告-2024-11-新能源
評(píng)論
0/150
提交評(píng)論