版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北京市人民大學(xué)附屬中學(xué)2023年高二上數(shù)學(xué)期末監(jiān)測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,修建一條公路需要一段環(huán)湖彎曲路段與兩條直道平滑連接(相切).已知環(huán)湖彎曲路段為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為()A.B.C.D.2.如圖為學(xué)生做手工時(shí)畫(huà)的橢圓(其中網(wǎng)格是由邊長(zhǎng)為1的正方形組成),它們的離心率分別為,則()A. B.C. D.3.中國(guó)景德鎮(zhèn)陶瓷世界聞名,其中青花瓷最受大家的喜愛(ài),如圖1這個(gè)精美的青花瓷花瓶,它的頸部(圖2)外形上下對(duì)稱,基本可看作是離心率為的雙曲線的一部分繞其虛軸所在直線旋轉(zhuǎn)所形成的曲面,若該頸部中最細(xì)處直徑為16厘米,瓶口直徑為20厘米,則頸部高為()A.10 B.20C.30 D.404.已知橢圓方程為,點(diǎn)在橢圓上,右焦點(diǎn)為F,過(guò)原點(diǎn)的直線與橢圓交于A,B兩點(diǎn),若,則橢圓的方程為()A. B.C. D.5.已知雙曲線E的漸近線為,則其離心率為()A. B.C. D.或6.已知三棱錐,點(diǎn)分別為的中點(diǎn),且,用表示,則等于()A. B.C. D.7.下列語(yǔ)句為命題的是()A. B.你們好!C.下雨了嗎? D.對(duì)頂角相等8.若雙曲線的焦距為,則雙曲線的漸近線方程為()A. B.C. D.9.將數(shù)列中的各項(xiàng)依次按第一個(gè)括號(hào)1個(gè)數(shù),第二個(gè)括號(hào)2個(gè)數(shù),第三個(gè)括號(hào)4個(gè)數(shù),第四個(gè)括號(hào)8個(gè)數(shù),第五個(gè)括號(hào)16個(gè)數(shù),…,進(jìn)行排列,,,…,則以下結(jié)論中正確的是()A.第10個(gè)括號(hào)內(nèi)的第一個(gè)數(shù)為1025 B.2021在第11個(gè)括號(hào)內(nèi)C.前10個(gè)括號(hào)內(nèi)一共有1025個(gè)數(shù) D.第10個(gè)括號(hào)內(nèi)的數(shù)字之和10.設(shè)變量x,y滿足約束條件則目標(biāo)函數(shù)的最小值為()A.3 B.1C.0 D.﹣111.已知函數(shù),,當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)的取值范圍為()A. B.C. D.12.直三棱柱ABC-A1B1C1中,△ABC為等邊三角形,AA1=AB,M是A1C1的中點(diǎn),則AM與平面所成角的正弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.等比數(shù)列的各項(xiàng)均為正數(shù),且,則__________.14.曲線在點(diǎn)處的切線方程為_(kāi)______.15.已知函數(shù),若過(guò)點(diǎn)存在三條直線與曲線相切,則的取值范圍為_(kāi)__________16.若命題P:對(duì)于任意,使不等式為真命題,則實(shí)數(shù)的取值范圍是___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在下列所給的三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問(wèn)題中,并加以解答①過(guò)(-1,2);②與直線平行;③與直線垂直問(wèn)題:已知直線過(guò)點(diǎn)M(3,5),且______(1)求的方程;(2)若與圓相交于點(diǎn)A、B,求弦AB的長(zhǎng)18.(12分)如圖,在三棱錐中,平面平面,且,(1)求證:;(2)求直線與所成角的余弦值19.(12分)已知首項(xiàng)為1的數(shù)列滿足.(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前n項(xiàng)和.20.(12分)已知命題p:“,”為假命題,命題q:“實(shí)數(shù)滿足”.若是真命題,是假命題,求的取值范圍21.(12分)若是雙曲線的兩個(gè)焦點(diǎn).(1)若雙曲線上一點(diǎn)到它的一個(gè)焦點(diǎn)的距離等于10,求點(diǎn)到另一個(gè)焦點(diǎn)距離;(2)如圖若是雙曲線左支上一點(diǎn),且,求的面積.22.(10分)已知拋物線:上的點(diǎn)到其準(zhǔn)線的距離為5.(1)求拋物線的方程;(2)已知為原點(diǎn),點(diǎn)在拋物線上,若的面積為6,求點(diǎn)的坐標(biāo).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由題設(shè),“需要一段環(huán)湖彎曲路段與兩條直道平滑連接(相切)“可得出此兩點(diǎn)處的切線正是兩條直道所在直線,由此規(guī)律驗(yàn)證四個(gè)選項(xiàng)即可得出答案【詳解】由函數(shù)圖象知,此三次函數(shù)在上處與直線相切,在點(diǎn)處與相切,下研究四個(gè)選項(xiàng)中函數(shù)在兩點(diǎn)處的切線A:,將0代入,此時(shí)導(dǎo)數(shù)為,與點(diǎn)處切線斜率為矛盾,故A錯(cuò)誤B:,將0代入,此時(shí)導(dǎo)數(shù)為,不為,故B錯(cuò)誤;C:,將2代入,此時(shí)導(dǎo)數(shù)為,與點(diǎn)處切線斜率為3矛盾,故C錯(cuò)誤;D:,將0,2代入,解得此時(shí)切線的斜率分別是,3,符合題意,故D正確;故選:D.2、D【解析】根據(jù)圖知分別得到橢圓、、的半長(zhǎng)軸和半短軸,再由求解比較即可.【詳解】由圖知橢圓的半長(zhǎng)軸和半短軸分別為:,橢圓的半長(zhǎng)軸和半短軸分別為:,橢圓的半長(zhǎng)軸和半短軸分別為:,所以,,,所以,故選:D3、B【解析】設(shè)雙曲線方程為,根據(jù)已知條件可得的值,由可得雙曲線的方程,再將代入方程可得的值,即可求解.【詳解】因?yàn)殡p曲線焦點(diǎn)在軸上,設(shè)雙曲線方程為由雙曲線的性質(zhì)可知:該頸部中最細(xì)處直徑為實(shí)軸長(zhǎng),所以,可得,因?yàn)殡x心率為,即,可得,所以,所以雙曲線的方程為:,因瓶口直徑為20厘米,根據(jù)對(duì)稱性可知頸部最右點(diǎn)橫坐標(biāo)為,將代入雙曲線可得,解得:,所以頸部高為,故選:B4、A【解析】根據(jù)橢圓的性質(zhì)可得,則橢圓方程可求.【詳解】由點(diǎn)在橢圓上得,由橢圓的對(duì)稱性可得,則,故橢圓方程為.故選:A.5、D【解析】根據(jù)雙曲線標(biāo)準(zhǔn)方程與漸近線的關(guān)系即可求解.【詳解】當(dāng)雙曲線焦點(diǎn)在x軸上時(shí),漸近線為,故離心率為;當(dāng)雙曲線焦點(diǎn)在y軸上時(shí),漸近線為,故離心率為;故選:D.6、D【解析】連接,利用,化簡(jiǎn)即可得到答案.【詳解】連接,如下圖.故選:D.7、D【解析】根據(jù)命題的定義判斷即可.【詳解】因?yàn)槟軌蚺袛嗾婕俚恼Z(yǔ)句叫作命題,所以ABC錯(cuò)誤,D正確.故選:D8、A【解析】由焦距為可得,又,進(jìn)而可得,最后根據(jù)焦點(diǎn)在軸上的雙曲線的漸近線方程為即可求解.【詳解】解:因?yàn)殡p曲線的焦距為,所以,所以,解得,所以,所以雙曲線的漸近線方程為,即,故選:A.9、D【解析】由第10個(gè)括號(hào)內(nèi)的第一個(gè)數(shù)為數(shù)列的第512項(xiàng),最后一個(gè)數(shù)為數(shù)列的第1023項(xiàng),進(jìn)行分析求解即可【詳解】由題意可得,第個(gè)括號(hào)內(nèi)有個(gè)數(shù),對(duì)于A,由題意得前9個(gè)括號(hào)內(nèi)共有個(gè)數(shù),所以第10個(gè)括號(hào)內(nèi)的第一個(gè)數(shù)為數(shù)列的第512項(xiàng),所以第10個(gè)括號(hào)內(nèi)的第一個(gè)數(shù)為,所以A錯(cuò)誤,對(duì)于C,前10個(gè)括號(hào)內(nèi)共有個(gè)數(shù),所以C錯(cuò)誤,對(duì)于B,令,得,所以2021為數(shù)列的第1011項(xiàng),由AC選項(xiàng)的分析可得2021在第10個(gè)括號(hào)內(nèi),所以B錯(cuò)誤,對(duì)于D,因?yàn)榈?0個(gè)括號(hào)內(nèi)的第一個(gè)數(shù)為,最后一個(gè)數(shù)為,所以第10個(gè)括號(hào)內(nèi)的數(shù)字之和為,所以D正確,故選:D【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查數(shù)列的綜合應(yīng)用,解題的關(guān)鍵是由題意確定出第10個(gè)括號(hào)內(nèi)第一個(gè)數(shù)和最后一個(gè)數(shù)分別對(duì)應(yīng)數(shù)列的哪一項(xiàng),考查分析問(wèn)題的能力,屬于較難題10、C【解析】線性規(guī)劃問(wèn)題,作出可行域后,根據(jù)幾何意義求解【詳解】作出可行域如圖所示,,數(shù)形結(jié)合知過(guò)時(shí)取最小值故選:C11、C【解析】由題意得出,構(gòu)造函數(shù),可知函數(shù)在區(qū)間上單調(diào)遞增,可得出對(duì)任意的恒成立,利用參變量分離法可得出,利用導(dǎo)數(shù)求得函數(shù)在區(qū)間上的最大值,由此可求得實(shí)數(shù)的取值范圍.【詳解】函數(shù)的定義域?yàn)?,?dāng)時(shí),恒成立,即,構(gòu)造函數(shù),則,所以,函數(shù)在區(qū)間上為增函數(shù),則對(duì)任意的恒成立,,令,其中,則.,所以函數(shù)在上單調(diào)遞減;又,所以.因此,實(shí)數(shù)的取值范圍是.故選:C.12、B【解析】取的中點(diǎn),以為原點(diǎn),所在直線分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,即可根據(jù)線面角的向量公式求出【詳解】如圖所示,取的中點(diǎn),以為原點(diǎn),所在直線分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,不妨設(shè),則,所以,平面的一個(gè)法向量為設(shè)AM與平面所成角為,向量與所成的角為,所以,即AM與平面所成角的正弦值為故選:B二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】由等比數(shù)列的性質(zhì)可得,再利用對(duì)數(shù)的性質(zhì)可得結(jié)果【詳解】解:因?yàn)榈缺葦?shù)列的各項(xiàng)均為正數(shù),且,所以,所以故答案為:1014、.【解析】由求導(dǎo)公式求出導(dǎo)數(shù),再把代入求出切線的斜率,代入點(diǎn)式方程化為一般式即可.【詳解】由題意得,∴在點(diǎn)處的切線的斜率是,則在點(diǎn)處的切線方程是,即.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義.注意區(qū)分“在某點(diǎn)處的切線”與“過(guò)某點(diǎn)的切線”,前者“某點(diǎn)”是切點(diǎn),后者“某點(diǎn)”不一定是切點(diǎn).15、【解析】設(shè)過(guò)M的切線切點(diǎn)為,求出切線方程,參變分離得,令,則原問(wèn)題等價(jià)于y=g(x)與y=-m-2的圖像有三個(gè)交點(diǎn),根據(jù)導(dǎo)數(shù)研究g(x)的圖像即可求出m的范圍【詳解】,設(shè)過(guò)點(diǎn)的直線與曲線相切于點(diǎn),則,化簡(jiǎn)得,,令,則過(guò)點(diǎn)存在三條直線與曲線相切等價(jià)于y=g(x)與y=-m-2的圖像有三個(gè)交點(diǎn)∵,故當(dāng)x<0或x>1時(shí),,g(x)單調(diào)遞增;當(dāng)0<x<1時(shí),,g(x)單調(diào)遞減,又,,∴g(x)如圖,∴-2<-m-2<0,即故答案為:﹒16、【解析】根據(jù)題意,結(jié)合指數(shù)函數(shù)不等式,將原問(wèn)題轉(zhuǎn)化為關(guān)于的不等式,對(duì)于任意恒成立,即可求解.【詳解】根據(jù)題意,知對(duì)于任意,恒成立,即,化簡(jiǎn)得,令,,則恒成立,即,解得,故.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)可依次根據(jù)直線方程的點(diǎn)斜式、“兩直線平行,斜率相等”、“兩直線垂直,斜率相乘為-1”求直線l的方程;(2)利用垂徑定理即可求圓的弦長(zhǎng).【小問(wèn)1詳解】選條件①:∵直線過(guò)點(diǎn)(3,5)及(-1,2),∴直線的斜率為,依題意,直線的方程為,即;選條件②:∵直線的斜率為,直線與直線平行,∴直線的斜率為,依題意,直線的方程為;即;選條件③:∵直線的斜率為,直線與直線垂直,∴直線的斜率為,依題意,直線的方程為,即;【小問(wèn)2詳解】圓心為(2,3),半徑為2,圓心到直線的距離為∴18、(1)證明見(jiàn)解析;(2).【解析】(1)過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),連接,由,,證出平面,即可證出.(2)以為原點(diǎn),的方向分別為軸正方向,建立空間直角坐標(biāo)系,寫出相應(yīng)點(diǎn)的坐標(biāo),利用,即可得到答案.【小問(wèn)1詳解】過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),連接,因?yàn)?,所以,又因?yàn)椋?,所以,即?因?yàn)椋云矫?,因?yàn)槠矫?,所以【小?wèn)2詳解】因?yàn)槠矫嫫矫?,平面平面,所以平面,以為原點(diǎn),的方向分別為軸正方向,建立如圖所示的空間直角坐標(biāo)系,則,可得,因?yàn)?,所以直線與所成角的余弦值為19、(1)(2)【解析】(1)由,構(gòu)造是以為首項(xiàng),為公比等比數(shù)列,利用等比數(shù)列的通項(xiàng)公式可得結(jié)果;(2)由(1)得,利用裂項(xiàng)相消可求.【小問(wèn)1詳解】由,得,又,所以數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,則,即,故數(shù)列的通項(xiàng)公式為.【小問(wèn)2詳解】由(1)知,,所以.因?yàn)?,所以,所以?shù)列的前n項(xiàng)和.20、或【解析】先假設(shè)命題、為真,分別求得實(shí)數(shù)的取值范圍,再由命題、具體的真假,取實(shí)數(shù)的取值范圍或其補(bǔ)集,最終確定實(shí)數(shù)的取值范圍.【詳解】若命題p為真,則“,”為假命題則,恒成立∴恒成立,即∴,∴.若命題q為真,則,即∴∴∵是真命題,是假命題∴命題、必為一真一假.①當(dāng)p真q假時(shí),∴;②當(dāng)p假q真時(shí),∴.綜上所述:a的取值范圍是或.21、(1)(2)【解析】(1)利用雙曲線定義,根據(jù)點(diǎn)到一個(gè)焦點(diǎn)的距離求點(diǎn)到另一個(gè)焦點(diǎn)的距離即可;(2)先根據(jù)定義得到,兩邊平方求得,即證,,再計(jì)算直角三角形面積即可.【小問(wèn)1詳解】是雙曲線的兩個(gè)焦點(diǎn),則,點(diǎn)M到它的一個(gè)焦點(diǎn)的距離等于10,設(shè)點(diǎn)到另
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林工商學(xué)院《音樂(lè)圖像學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南女子學(xué)院《綜藝主持》2023-2024學(xué)年第一學(xué)期期末試卷
- 黑龍江農(nóng)墾職業(yè)學(xué)院《草書(shū)》2023-2024學(xué)年第一學(xué)期期末試卷
- 高考物理總復(fù)習(xí)《電容器帶電粒子在電場(chǎng)中的運(yùn)動(dòng)》專項(xiàng)測(cè)試卷含答案
- 鄭州城市職業(yè)學(xué)院《管理科學(xué)與工程學(xué)科論文寫作指導(dǎo)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院《影視攝像技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)學(xué)校微信公眾號(hào)信息發(fā)布工作制度
- 浙江財(cái)經(jīng)大學(xué)《基礎(chǔ)醫(yī)學(xué)概論Ⅱ3(微生物學(xué))》2023-2024學(xué)年第一學(xué)期期末試卷
- 張家口職業(yè)技術(shù)學(xué)院《法務(wù)談判與技巧》2023-2024學(xué)年第一學(xué)期期末試卷
- 缺陷管理與風(fēng)險(xiǎn)評(píng)估實(shí)施細(xì)則
- 【寒假預(yù)習(xí)】專題04 閱讀理解 20篇 集訓(xùn)-2025年人教版(PEP)六年級(jí)英語(yǔ)下冊(cè)寒假提前學(xué)(含答案)
- 2024年突發(fā)事件新聞發(fā)布與輿論引導(dǎo)合同
- 地方政府信訪人員穩(wěn)控實(shí)施方案
- 小紅書(shū)推廣合同范例
- 商業(yè)咨詢報(bào)告范文模板
- (正式版)SHT 3227-2024 石油化工裝置固定水噴霧和水(泡沫)噴淋滅火系統(tǒng)技術(shù)標(biāo)準(zhǔn)
- 急性腹瀉與慢性腹瀉修改版
- 先天性肌性斜頸的康復(fù)
- GB/T 37518-2019代理報(bào)關(guān)服務(wù)規(guī)范
- GB/T 156-2017標(biāo)準(zhǔn)電壓
- PPT溝通的藝術(shù)課件
評(píng)論
0/150
提交評(píng)論