版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆上海市曹楊第二中學(xué)數(shù)學(xué)高二上期末復(fù)習檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線=的焦點為F,M、N是拋物線上兩個不同的點,若,則線段MN的中點到y(tǒng)軸的距離為()A.8 B.4C. D.92.已知集合,,則A. B.C. D.3.已知直線l與拋物線交于不同的兩點A,B,O為坐標原點,若直線的斜率之積為,則直線l恒過定點()A. B.C. D.4.直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.都有可能5.圓的圓心和半徑分別是()A., B.,C., D.,6.已知函數(shù)在區(qū)間有且僅有2個極值點,則m的取值范圍是()A. B.C. D.7.函數(shù),的值域為()A. B.C. D.8.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B.C. D.9.設(shè)是等差數(shù)列,是其公差,是其前n項的和.若,,則下列結(jié)論不正確的是()A. B.C. D.與均為的最大值10.散點圖上有5組數(shù)據(jù):據(jù)收集到的數(shù)據(jù)可知,由最小二乘法求得回歸直線方程為,則的值為()A.54.2 B.87.64C.271 D.438.211.命題“若,都是偶數(shù),則也是偶數(shù)”的逆否命題是A.若是偶數(shù),則與不都是偶數(shù)B.若是偶數(shù),則與都不是偶數(shù)C.若不是偶數(shù),則與不都是偶數(shù)D.若不是偶數(shù),則與都不是偶數(shù)12.中國大運河項目成功人選世界文化遺產(chǎn)名錄,成為中國第46個世界遺產(chǎn)項目,隨著對大運河的保護與開發(fā),大運河已成為北京城市副中心的一張亮麗的名片,也成為眾多旅游者的游覽目的地.今有一旅游團乘游船從奧體公園碼頭出發(fā)順流而下至漕運碼頭,又立即逆水返回奧體公園碼頭,已知游船在順水中的速度為,在逆水中的速度為,則游船此次行程的平均速度V與的大小關(guān)系是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若不等式的解集是,則的值是___________.14.已知橢圓的右頂點為,為上一點,則的最大值為______.15.已知點為拋物線的焦點,,點為拋物線上一動點,當最小時,點恰好在以為焦點的雙曲線上,則該雙曲線的離心率為___________.16.已知空間直角坐標系中,點,,若,與同向,則向量的坐標為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱柱中,四邊形為矩形,,,點E為棱的中點,.(1)求證:平面平面;(2)求平面AEB與平面夾角的余弦值.18.(12分)已知的內(nèi)角的對邊分別為a,,若向量,且(1)求角的值;(2)已知的外接圓半徑為,求周長的最大值.19.(12分)橢圓的左右焦點分別為,,焦距為,為原點.橢圓上任意一點到,距離之和為.(1)求橢圓的標準方程;(2)過點的斜率為2的直線交橢圓于、兩點,求的面積.20.(12分)設(shè)a,b是實數(shù),若橢圓過點,且離心率為.(1)求橢圓E的標準方程;(2)過橢圓E的上頂點P分別作斜率為,的兩條直線與橢圓交于C,D兩點,且,試探究過C,D兩點的直線是否過定點?若過定點,求出定點坐標;否則,說明理由.21.(12分)已知橢圓的一個頂點為,離心率為(1)求橢圓C的方程;(2)若直線l與橢圓C交于M、N兩點,直線BM與直線BN的斜率之積為,證明直線l過定點并求出該定點坐標22.(10分)某學(xué)校一航模小組進行飛機模型飛行高度實驗,飛機模型在第一分鐘時間內(nèi)上升了米高度.若通過動力控制系統(tǒng),可使飛機模型在以后的每一分鐘上升的高度都是它在前一分鐘上升高度的(1)在此動力控制系統(tǒng)下,該飛機模型在第三分鐘內(nèi)上升的高度是多少米?(2)這個飛機模型上升的最大高度能超過米嗎?如果能,求出從第幾分鐘開始高度超過米;如果不能,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】過分別作垂直于準線,垂足為,則由拋物線的定義可得,再過MN的中點作垂直于準線,垂足為,然后利用梯形的中位線定理可求得結(jié)果【詳解】拋物線=的焦點,準線方程為直線如圖,過分別作垂直于準線,垂足為,過MN的中點作垂直于準線,垂足為,則由拋物線的定義可得,因為,所以,因為是梯形的中位線,所以,所以線段MN的中點到y(tǒng)軸的距離為4,故選:B2、B【解析】由交集定義直接求解即可.【詳解】集合,,則.故選B.【點睛】本題主要考查了集合的交集運算,屬于基礎(chǔ)題.3、A【解析】設(shè)出直線方程,聯(lián)立拋物線方程,得到,進而得到的值,將直線的斜率之積為,用A,B點坐標表示出來,結(jié)合的值即可求得答案.【詳解】設(shè)直線方程為,聯(lián)立,整理得:,需滿足,即,則,由,得:,所以,即,故,所以直線l為:,當時,,即直線l恒過定點,故選:A.4、A【解析】求出圓心到直線的距離,然后與圓的半徑進行大小比較即可求解.【詳解】解:圓的圓心,,因為圓心到直線的距離,所以直線與圓的位置關(guān)系是相交,故選:A.5、D【解析】先化為標準方程,再求圓心半徑即可.【詳解】先化為標準方程可得,故圓心為,半徑為.故選:D.6、A【解析】根據(jù)導(dǎo)數(shù)的性質(zhì),結(jié)合余弦型函數(shù)的性質(zhì)、極值的定義進行求解即可.【詳解】由,,因為在區(qū)間有且僅有2個極值點,所以令,解得,因此有,故選:A7、A【解析】利用基本不等式可得,進而可得,即求.【詳解】∵,∴,當且僅當,即時取等號,∴,,∴.故選:A.8、A【解析】將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,在中,計算半徑即可.【詳解】由,,可知平面將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得又,故在中,此即為外接球半徑,從而外接球表面積為故選:A【點睛】本題考查了三棱錐外接球的表面積,考查了學(xué)生空間想象,邏輯推理,綜合分析,數(shù)學(xué)運算的能力,屬中檔題.9、C【解析】由已知條件可以得出,,,即可得公差,再利用等差數(shù)列的性質(zhì)以及前n項的和的性質(zhì)可判斷每個選項的正誤,進而可得正確選項.【詳解】由可得,由可得,故選項B正確;由可得,因為公差,故選項A正確,,所以,故選項C不正確;由于是等差數(shù)列,公差,,,,所以都是的最大值,故選項D正確;所以選項C不正確,故選:C10、C【解析】通過樣本中心點來求得正確答案.【詳解】,故,則,故.故選:C11、C【解析】命題的逆否命題是將條件和結(jié)論對換后分別否定,因此“若都是偶數(shù),則也是偶數(shù)”的逆否命題是若不是偶數(shù),則與不都是偶數(shù)考點:四種命題12、A【解析】求出平均速度V,進而結(jié)合基本不等式求得答案.【詳解】易知,設(shè)奧運公園碼頭到漕運碼頭之間的距離為1,則游船順流而下的時間為,逆流而上的時間為,則平均速度,由基本不等式可得,而,當且僅當時,兩個不等式都取得“=”,而根據(jù)題意,于是.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用和是方程的兩根,再利用根與系數(shù)的關(guān)系即可求出和的值,即可得的值.【詳解】由題意可得:方程的兩根是和,由根與系數(shù)的關(guān)系可得:,所以,所以,故答案為:14、【解析】設(shè)出點P的坐標,利用兩點間距離公式建立函數(shù)關(guān)系,借助二次函數(shù)計算最值作答.【詳解】橢圓的右頂點為,設(shè)點,則,即,且,于是得,因,則當時,,所以的最大值為.故答案為:15、【解析】設(shè)點,根據(jù)拋物線的定義表示出,將用表示,并逐步轉(zhuǎn)化為一個基本不等式形式,從而求出取最小值時的點的坐標,再根據(jù)雙曲線的定義及離心率的公式求值.【詳解】由題意可得,,,拋物線的準線為,設(shè)點,根據(jù)對稱性,不妨設(shè),由拋物線的定義可知,又,所以,當且僅當時,等號成立,此時,設(shè)以為焦點的雙曲線方程為,則,即,又,,所以離心率.故答案為:.【點睛】關(guān)鍵點點睛:本題的關(guān)鍵是將的坐標表達式逐漸轉(zhuǎn)化為一個可以用基本不等式求最值的式子,從而找出取最小值時的點的坐標.16、【解析】求出坐標,根據(jù)給條件表示出坐標,利用向量模的坐標表示計算作答.【詳解】因,,則,因與同向,則設(shè),因此,,于是得,解得,則,所以向量的坐標為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)根據(jù)矩形及勾股定理的逆定理可得線面垂直的條件,再由平面,即可證明面面垂直;(2)建立空間直角坐標后,求出相關(guān)法向量,再用夾角公式即可.【小問1詳解】證明:由三棱柱的性質(zhì)及可知四邊形為菱形又∵∴為等邊三角形∴,又∵,∴,∴又∵四邊形為矩形∴又∵∴平面又∵平面∴平面平面.【小問2詳解】以B為原點BE為x軸,為y軸,BA為E軸建立空間直角坐標系,如圖所示,,,,,,設(shè)平面的法向量為.則即∴,又∵平面ABE的法向量為,∴,∴平面ABE與平面夾角的余弦值為.18、(1)(2)6【解析】(1)由可得,再利用正弦定理和三角函數(shù)恒等變換公可得,從而可求出角的值,(2)利用正弦定理求出,再利用余弦定理結(jié)合基本不等式可得的最大值為4,從而可求出三角形周長的最大值【小問1詳解】由,得
,由正弦定理,得,即.在中,由,得.又,所以.【小問2詳解】根據(jù)題意,得,由余弦定理,得,即,整理得,當且僅當時,取等號,所以的最大值為所以.所以的周長的最大值為
.19、(1)(2)【解析】(1)根據(jù)題意和橢圓的定義可知a,c,再根據(jù),即可求出b,由此即可求出橢圓的方程;(2)求出直線方程,將其與橢圓方程聯(lián)立,根據(jù)弦長公式求出的長度,再根據(jù)點到直線的距離公式求出點O到直線AB的距離,再根據(jù)面積公式即可求出結(jié)果.【小問1詳解】由題意可得,,∴,,,所以橢圓的標準方程為.【小問2詳解】直線l的方程為,代入橢圓方程得,設(shè),,則,,,∴,又∵點O到直線AB的距離,∴,即△OAB的面積為.20、(1);(2)過定點,坐標為.【解析】(1)根據(jù)橢圓的離心率公式,結(jié)合代入法進行求解即可;(2)根據(jù)直線斜率公式和一元二次方程根與系數(shù)的關(guān)系進行求解即可.【小問1詳解】因為橢圓離心率為,所以有.橢圓過點,所以,由可解:,所以該橢圓方程為:;【小問2詳解】由(1)可知:,設(shè)直線的方程為:,若,由橢圓的對稱性可知:,不符合題意,當時,直線的方程與橢圓方程聯(lián)立得:,設(shè),,,因為,所以,把代入得:,所以有或,解得:或,當時,直線,直線恒過定點,此時與點重合,不符合題意,當時,,直線恒過點,當直線不存在斜率時,此時,,因為,所以,兩點不在橢圓上,不符合題意,綜上所述:過C,D兩點的直線過定點,定點坐標為.【點睛】關(guān)鍵點睛:根據(jù)一元二次方程根與系數(shù)關(guān)系是解題的關(guān)鍵.21、(1);(2)答案見解析,直線過定點.【解析】(1)首先根據(jù)頂點為得到,再根據(jù)離心率為得到,從而得到橢圓C的方程.(2)設(shè),,,與橢圓聯(lián)立得到,利用直線BM與直線BN的斜率之積為和根系關(guān)系得到,從而得到直線恒過的定點.【詳解】(1)一個頂點為,故,又,即,所以故橢圓的方程為(2)若直線l的斜率不存在,設(shè),,此時,與題設(shè)矛盾,故直線l斜率必存在設(shè),,,聯(lián)立得,∴,∵,即∴,化為,解得或(舍去),即直線過定點【點睛
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能吸塵承包合同范本
- 環(huán)境監(jiān)測儀器操作規(guī)程
- 研發(fā)管理辦法
- 醫(yī)院后勤物業(yè)招投標咨詢協(xié)議
- 2024壬癸雙方關(guān)于電子商務(wù)平臺的技術(shù)開發(fā)與服務(wù)合同
- 木質(zhì)智能化設(shè)備安裝合同
- 2024年太陽能光伏發(fā)電項目施工合同范本
- 腦科醫(yī)院護士聘用合同范本
- 服務(wù)租賃承包合同
- 學(xué)校運動場圍欄圍墻建設(shè)合同
- 質(zhì)量保證體系范文(必備14篇)
- 兒科運用PDCA循環(huán)改進提高病歷書寫質(zhì)量
- 聽神經(jīng)瘤講課課件
- 2023年食品安全糧食類理論知識考試題庫(含答案)
- 人教版五年級上冊數(shù)學(xué)《可能性》作業(yè)設(shè)計
- 學(xué)校建設(shè)工程項目自查報告
- 混凝土結(jié)構(gòu)理論智慧樹知到答案章節(jié)測試2023年華南理工大學(xué)
- 土地整理項目結(jié)算審計方案及提供資料清單
- 某文化博物館建設(shè)項目可行性研究報告
- 二年級語文質(zhì)量分析ppt課件精選ppt
- JJF 1272-2011阻容法露點濕度計校準規(guī)范
評論
0/150
提交評論