2024屆四川省成都市實驗高級中學(xué)數(shù)學(xué)高二上期末檢測試題含解析_第1頁
2024屆四川省成都市實驗高級中學(xué)數(shù)學(xué)高二上期末檢測試題含解析_第2頁
2024屆四川省成都市實驗高級中學(xué)數(shù)學(xué)高二上期末檢測試題含解析_第3頁
2024屆四川省成都市實驗高級中學(xué)數(shù)學(xué)高二上期末檢測試題含解析_第4頁
2024屆四川省成都市實驗高級中學(xué)數(shù)學(xué)高二上期末檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆四川省成都市實驗高級中學(xué)數(shù)學(xué)高二上期末檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在空間四邊形中,,,,且,則()A. B.C. D.2.在平面上給定相異兩點,設(shè)點在同一平面上且滿足,當(dāng)且時,點的軌跡是一個圓,這個軌跡最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),故我們稱這個圓為阿波羅尼斯圓.現(xiàn)有雙曲線,為雙曲線的左、右頂點,為雙曲線的虛軸端點,動點滿足,面積的最大值為,面積的最小值為,則雙曲線的離心率為()A. B.C. D.3.如圖,在四面體中,,,,分別為,,,的中點,則化簡的結(jié)果為()A. B.C. D.4.已知是拋物線上的點,F(xiàn)是拋物線C的焦點,若,則()A1011 B.2020C.2021 D.20225.在等差數(shù)列中,已知,則()A.4 B.8C.3 D.66.函數(shù)在上的最小值為()A. B.C.-1 D.7.等差數(shù)列的前項和,若,則A.8 B.10C.12 D.148.若展開式的二項式系數(shù)之和為,則展開式的常數(shù)項為()A. B.C. D.9.復(fù)數(shù)的虛部為()A. B.C. D.10.設(shè)是函數(shù)的導(dǎo)函數(shù),的圖象如圖所示,則的圖象最有可能的是()A. B.C. D.11.?dāng)?shù)列中,,,.當(dāng)時,則n等于()A.2016 B.2017C.2018 D.201912.一個動圓與定圓相外切,且與直線相切,則動圓圓心的軌跡方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若直線:x-2y+1=0與直線:2x+my-1=0相互垂直,則實數(shù)m的值為________.14.點到直線的距離為_______.15.一個四面體有五條棱長均為2,則該四面體的體積最大值為_______16.若實數(shù)、滿足,則的取值范圍為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=若不建隔熱層,每年能源消耗費用為8萬元.設(shè)f(x)為隔熱層建造費用與20年的能源消耗費用之和(Ⅰ)求k的值及f(x)的表達式(Ⅱ)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值18.(12分)在平面直角坐標(biāo)系中,動點到定點的距離比到軸的距離大,設(shè)動點的軌跡為曲線,分別過曲線上的兩點,做曲線的兩條切線,且交于點,與直線交于兩點(1)求曲線的方程;(2)求面積的最小值.19.(12分)如圖,在四棱錐中,四邊形是直角梯形,,,,為等邊三角形.(1)證明:;(2)求點到平面的距離.20.(12分)的內(nèi)角A,B,C的對邊分別為a,b,c.已知.(1)求角C;(2)若,,求的周長.21.(12分)如圖,在三棱柱中,側(cè)棱垂直于底面,分別是的中點(1)求證:平面平面;(2)求證:平面;(3)求三棱錐體積22.(10分)如圖,四棱錐中,,,,平面.(1)在線段上是否存在一點使得平面?若存在,求出的位置;若不存在,請說明理由;(2)求四棱錐的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用空間向量的線性運算即可求解.【詳解】..故選:A.2、C【解析】先求動點的軌跡方程,再根據(jù)面積的最大值求得,根據(jù)的面積最小值求,由此可求雙曲線的離心率.【詳解】設(shè),,,依題意得,即,兩邊平方化簡得,所以動點的軌跡是圓心為,半徑的圓,當(dāng)位于圓的最高點時的面積最大,所以,解得;當(dāng)位于圓的最左端時的面積最小,所以,解得,故雙曲線的離心率為.故選:C.3、C【解析】根據(jù)向量的加法和數(shù)乘的幾何意義,即可得到答案;【詳解】故選:C4、C【解析】結(jié)合向量坐標(biāo)運算以及拋物線的定義求得正確答案.【詳解】設(shè),因為是拋物線上的點,F(xiàn)是拋物線C的焦點,所以,準(zhǔn)線為:,因此,所以,即,由拋物線的定義可得,所以故選:C5、B【解析】根據(jù)等差數(shù)列的性質(zhì)計算出正確答案.【詳解】由等差數(shù)列的性質(zhì)可知,得.故選:B6、D【解析】求出函數(shù)的導(dǎo)函數(shù),根據(jù)導(dǎo)數(shù)的符號求出函數(shù)的單調(diào)區(qū)間,再根據(jù)函數(shù)的單調(diào)性即可得出答案.【詳解】解:因為,所以,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增,故.故選:D.7、C【解析】假設(shè)公差為,依題意可得.所以.故選C.考點:等差數(shù)列的性質(zhì).8、C【解析】利用二項式系數(shù)的性質(zhì)求得的值,再利用二項式展開式的通項公式,求得結(jié)果即可.【詳解】解:因為展開式的二項式系數(shù)之和為,則,所以,令,求得,所以展開式的常數(shù)項為.故選:C.9、D【解析】直接根據(jù).復(fù)數(shù)的乘法運算結(jié)合復(fù)數(shù)虛部的定義即可得出答案【詳解】解:,所以復(fù)數(shù)的虛部為.故選:D.10、C【解析】利用導(dǎo)函數(shù)的圖象,判斷導(dǎo)函數(shù)的符號,得到函數(shù)的單調(diào)性以及函數(shù)的極值點,然后判斷選項即可【詳解】解:由題意可知:和時,,函數(shù)是增函數(shù),時,,函數(shù)是減函數(shù);是函數(shù)的極大值點,是函數(shù)的極小值點;所以函數(shù)的圖象只能是故選:C11、B【解析】根據(jù)已知條件用逐差法求得的通項公式,再根據(jù)裂項求和法求得,代值計算即可.【詳解】因為,,則,即,則,故,又,即,解得.故選:B.12、D【解析】根據(jù)點到直線的距離與點到點之間距離的關(guān)系化簡即可.【詳解】定圓的圓心,半徑為2,設(shè)動圓圓心P點坐標(biāo)為(x,y),動圓的半徑為r,d為動圓圓心到直線的距離,即r,則根據(jù)兩圓相外切及直線與圓相切的性質(zhì)可得,所以,化簡得:∴動圓圓心軌跡方程為故選:D二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】由兩條直線垂直可知,進而解得答案即可.【詳解】因為兩條直線垂直,所以.故答案為:1.14、【解析】應(yīng)用點線距離公式求點線距離.【詳解】由題設(shè),點到距離為.故答案為:15、1【解析】由已知中一個四面體有五條棱長都等于2,易得該四面體必然有兩個面為等邊三角形,根據(jù)棱錐的幾何特征,分析出當(dāng)這兩個平面垂直時,該四面體的體積最大,將相關(guān)幾何量代入棱錐體積公式,即可得到答案【詳解】一個四面體有五條棱長都等于2,如下圖:設(shè)除PC外的棱均為2,設(shè)P到平面ABC距離為h,則三棱錐的體積V=,∵是定值,∴當(dāng)P到平面ABC距離h最大時,三棱錐體積最大,故當(dāng)平面PAB⊥平面ABC時,三棱錐體積最大,此時h為等邊三角形PAB的AB邊上的高,則h,故三棱錐體積的最大值為:故答案為:116、【解析】直接利用換元法以及基本不等式,求出結(jié)果【詳解】解:設(shè),由于,所以,由于,(當(dāng)且僅當(dāng)時取等號)所以(當(dāng)且僅當(dāng)時取等號),(當(dāng)且僅當(dāng)時取等號),故,,所以,整理得:故的取值范圍為的取值范圍故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、,因此.,當(dāng)隔熱層修建厚時,總費用達到最小值70萬元【解析】解:(Ⅰ)設(shè)隔熱層厚度為,由題設(shè),每年能源消耗費用為.再由,得,因此.而建造費用為最后得隔熱層建造費用與20年的能源消耗費用之和為(Ⅱ),令,即.解得,(舍去)當(dāng)時,,當(dāng)時,,故是的最小值點,對應(yīng)的最小值為當(dāng)隔熱層修建厚時,總費用達到最小值為70萬元18、(1)(2)【解析】(1)由題意可得化簡可得答案;(2)求出、方程并得到、點坐標(biāo),再聯(lián)立,方程求出交點和、點到的距離,可得,設(shè),與拋物線方程聯(lián)立利用韋達定理得到,設(shè),記,利用導(dǎo)數(shù)可得答案..【小問1詳解】由題意可知:,即:化簡得:;【小問2詳解】由題意可知:,,,過點的切線斜率為,方程為:①,令,,則,同理:方程為:②,,聯(lián)立①②得:,的交點,,點到的距離,所以③,設(shè):,則,整理得,所以,由韋達定理得:,,代入③式得:,設(shè),記,則,令得(舍負),時,單調(diào)遞減:時,單調(diào)遞增,所以,當(dāng)且僅當(dāng)時的最小值為.19、(1)略;(2)【解析】(1)推導(dǎo)出BD⊥BC,PB⊥BC,從而BC⊥平面PBD,由此能證明PD⊥BC.(2)利用等體積求得點B到面的距離【詳解】(1)∵在四棱錐P﹣ABCD中,四邊形ABCD是直角梯形,DC=2AD=2AB=2,∠DAB=∠ADC=90°,PB,△PDC為等邊三角形∴BC=BD,∴BD2+BC2=CD2,PB2+BC2=PC2,∴BD⊥BC,PB⊥BC,∵BD∩PB=B,∴BC⊥平面PBD,∵PD?平面PBD,∴PD⊥BC(2)由(1)知,,故故得點B到面PCD的距離為【點睛】本題考查線線垂直的證明,考查點面距離的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題20、(1)(2)【解析】(1)根據(jù)正弦定理把化成,利用和角公式可得從而求得角;(2)根據(jù)三角形的面積和角的值求得,由余弦定理求得邊得到的周長.試題解析:(1)由已知可得(2)又,周長為考點:正余弦定理解三角形.21、(1)證明見解析;(2)證明見解析;(3)【解析】(1)由直線與平面垂直證明直線與平行的垂直;(2)證明直線與平面平行;(3)求三棱錐的體積就用體積公式.(1)在三棱柱中,底面ABC,所以AB,又因為AB⊥BC,所以AB⊥平面,因為AB平面,所以平面平面.(2)取AB中點G,連結(jié)EG,F(xiàn)G,因為E,F(xiàn)分別是、的中點,所以FG∥AC,且FG=AC,因為AC∥,且AC=,所以FG∥,且FG=,所以四邊形為平行四邊形,所以EG,又因為EG平面ABE,平面ABE,所以平面.(3)因為=AC=2,BC=1,AB⊥BC,所以AB=,所以三棱錐的體積為:==.考點:本小題主要考查直線與直線、直線與平面、平面與平面的垂直與平行的證明;考查幾何體的體積的求解等基礎(chǔ)知識,考查同學(xué)們的空間想象能力、推理論證能力、運算求解能力、邏輯推理能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想22、(1)存在,為的中點,證明見解析;(2).【解析】(1)取的中點,的中點,連接,,,證明,由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論