2024屆四川省樂(lè)山十校高高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第1頁(yè)
2024屆四川省樂(lè)山十校高高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第2頁(yè)
2024屆四川省樂(lè)山十校高高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第3頁(yè)
2024屆四川省樂(lè)山十校高高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第4頁(yè)
2024屆四川省樂(lè)山十校高高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆四川省樂(lè)山十校高高二上數(shù)學(xué)期末調(diào)研模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.將一枚骰子先后拋擲兩次,若先后出現(xiàn)的點(diǎn)數(shù)分別記為a,b,則直線到原點(diǎn)的距離不超過(guò)1的概率是()A. B.C. D.2.圓與圓的位置關(guān)系是()A.內(nèi)切 B.相交C.外切 D.相離3.若展開(kāi)式的二項(xiàng)式系數(shù)之和為,則展開(kāi)式的常數(shù)項(xiàng)為()A. B.C. D.4.?dāng)?shù)學(xué)家歌拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱為三角形的歐拉線.已知的三個(gè)頂點(diǎn)分別為,,,則的歐拉線方程是()A. B.C. D.5.若函數(shù),則單調(diào)增區(qū)間為()A. B.C. D.6.在數(shù)列中,,則()A. B.C.2 D.17.已知雙曲線,過(guò)原點(diǎn)作一條傾斜角為的直線分別交雙曲線左、右兩支于、兩點(diǎn),以線段為直徑的圓過(guò)右焦點(diǎn),則雙曲線的離心率為().A. B.C. D.8.?dāng)?shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱為三角形的歐拉線已知的頂點(diǎn),則的歐拉線方程為()A. B.C. D.9.有一機(jī)器人的運(yùn)動(dòng)方程為,(是時(shí)間,是位移),則該機(jī)器人在時(shí)刻時(shí)的瞬時(shí)速度為()A. B.C. D.10.已知橢圓,則它的短軸長(zhǎng)為()A.2 B.4C.6 D.811.已知雙曲線的左右焦點(diǎn)分別為、,過(guò)作的一條漸近線的垂線,垂足為,若的面積為,則的漸近線方程為A. B.C. D.12.若函數(shù)有兩個(gè)不同的極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.滕王閣,江南三大名樓之一,因初唐詩(shī)人王勃所作《滕王閣序》中的“落霞與孤鶩齊飛,秋水共長(zhǎng)天一色”而名傳千古,流芳后世.如圖,在滕王閣旁地面上共線的三點(diǎn),,處測(cè)得閣頂端點(diǎn)的仰角分別為,,.且米,則滕王閣高度___________米.14.已知為曲線:上一點(diǎn),,,則的最小值為_(kāi)_____15.已知銳角的內(nèi)角,,的對(duì)邊分別為,,,且.若,則外接圓面積的最小值為_(kāi)_____16.根據(jù)某市有關(guān)統(tǒng)計(jì)公報(bào)顯示,隨著“一帶一路”經(jīng)貿(mào)合作持續(xù)深化,該市對(duì)外貿(mào)易近幾年持續(xù)繁榮,2017年至2020年每年進(jìn)口總額(單位:千億元)和出口總額(單位:千億元)之間的一組數(shù)據(jù)如下:2017年2018年2019年2020年若每年的進(jìn)出口總額,滿足線性相關(guān)關(guān)系,則______;若計(jì)劃2022年出口總額達(dá)到千億元,預(yù)計(jì)該年進(jìn)口總額為_(kāi)_____億元三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知關(guān)于的不等式(1)若不等式的解集為,求的值(2)若不等式的解集為,求的取值范圍18.(12分)已知橢圓:的左、右焦點(diǎn)分別為,,過(guò)點(diǎn)的直線l交橢圓于A,兩點(diǎn),的中點(diǎn)坐標(biāo)為.(1)求直線l的方程;(2)求的面積.19.(12分)已知為等差數(shù)列,是各項(xiàng)均為正數(shù)的等比數(shù)列的前n項(xiàng)和,,,,在①;②;③.這三個(gè)條件中任選其中一個(gè),補(bǔ)充在上面的橫線上,并完成下面問(wèn)題的解答(如果選擇多個(gè)條件解答,則按選擇的第一個(gè)解答計(jì)分)(1)求數(shù)列和的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.20.(12分)已知數(shù)列的前n項(xiàng)和為滿足(1)求證:是等比數(shù)列,并求數(shù)列通項(xiàng)公式;(2)若,數(shù)列的前項(xiàng)和為.求證:21.(12分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.22.(10分)已知橢圓,斜率為的動(dòng)直線與橢圓交于A,B兩點(diǎn),且直線與圓相切.(1)若,求直線的方程;(2)求三角形的面積的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】先由條件得出a,b滿足,得出滿足的基本事件數(shù),再求出總的基本事件數(shù),從而可得答案.【詳解】直線到原點(diǎn)的距離不超過(guò)1,則所以當(dāng)時(shí),可以為5,6當(dāng)時(shí),可以為4,5,6當(dāng)時(shí),可以為4,5,6當(dāng)時(shí),可以為2,3,4,5,6當(dāng)時(shí),可以為1,2,3,4,5,6當(dāng)時(shí),可以為1,2,3,4,5,6滿足的共有25種結(jié)果.將一枚骰子先后拋擲兩次,若先后出現(xiàn)的點(diǎn)數(shù)分別記為a,b,共有種結(jié)果所以滿足條件的概率為故選:C2、B【解析】判斷圓心距與兩圓半徑之和、之差關(guān)系即可判斷兩圓位置關(guān)系.【詳解】由得圓心坐標(biāo)為,半徑,由得圓心坐標(biāo)為,半徑,∴,,∴,即兩圓相交.故選:B.3、C【解析】利用二項(xiàng)式系數(shù)的性質(zhì)求得的值,再利用二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求得結(jié)果即可.【詳解】解:因?yàn)檎归_(kāi)式的二項(xiàng)式系數(shù)之和為,則,所以,令,求得,所以展開(kāi)式的常數(shù)項(xiàng)為.故選:C.4、B【解析】根據(jù)的三個(gè)頂點(diǎn)坐標(biāo),先求解出重心的坐標(biāo),然后再根據(jù)三個(gè)點(diǎn)坐標(biāo)求解任意兩條垂直平分線的方程,聯(lián)立方程,即可算出外心的坐標(biāo),最后根據(jù)重心和外心的坐標(biāo)使用點(diǎn)斜式寫(xiě)出直線方程.【詳解】由題意可得的重心為.因?yàn)?,,所以線段的垂直平分線的方程為.因?yàn)?,,所以直線的斜率,線段的中點(diǎn)坐標(biāo)為,則線段的垂直平分線的方程為.聯(lián)立,解得,則的外心坐標(biāo)為,故的歐拉線方程是,即故選:B.5、C【解析】求出導(dǎo)函數(shù),令解不等式即可得答案.【詳解】解:因?yàn)楹瘮?shù),所以,令,得,所以的單調(diào)增區(qū)間為,故選:C.6、A【解析】利用條件可得數(shù)列為周期數(shù)列,再借助周期性計(jì)算得解.【詳解】∵∴,,所以數(shù)列是以3為周期的周期數(shù)列,∴,故選:A.7、A【解析】設(shè)雙曲線的左焦點(diǎn)為,連接、,求得、,利用雙曲線的定義可得出關(guān)于、的等式,即可求得雙曲線的離心率.【詳解】設(shè)雙曲線的左焦點(diǎn)為,連接、,如下圖所示:由題意可知,點(diǎn)為的中點(diǎn),也為的中點(diǎn),且,則四邊形為矩形,故,由已知可知,由直角三角形的性質(zhì)可得,故為等邊三角形,故,所以,,由雙曲線的定義可得,所以,.故選:A.8、D【解析】根據(jù)題意得出的歐拉線即為線段的垂直平分線,然后求出線段的垂直平分線的方程即可.【詳解】因?yàn)?,所以線段的中點(diǎn)的坐標(biāo),線段所在直線的斜率,則線段的垂直平分線的方程為,即,因?yàn)?,所以的外心、重心、垂心都在線段的垂直平分線上,所以的歐拉線方程為.故選:D【點(diǎn)睛】本題主要考走查直線的方程,解題的關(guān)鍵是準(zhǔn)確找出歐拉線,屬于中檔題.9、B【解析】對(duì)運(yùn)動(dòng)方程求導(dǎo),根據(jù)導(dǎo)數(shù)意義即速度求得在時(shí)的導(dǎo)數(shù)值即可.【詳解】由題知,,當(dāng)時(shí),,即速度為7.故選:B10、B【解析】根據(jù)橢圓短軸長(zhǎng)的定義進(jìn)行求解即可.【詳解】由橢圓的標(biāo)準(zhǔn)方程可知:,所以該橢圓的短軸長(zhǎng)為,故選:B11、D【解析】求得,根據(jù)的面積列方程,由此求得,進(jìn)而求得雙曲線的漸近線方程.【詳解】依題意,雙曲線的一條漸近線為,則,所以,所以,所以.所以雙曲線漸近線方程為.故選:D【點(diǎn)睛】本小題主要考查雙曲線漸近線的有關(guān)計(jì)算,屬于中檔題.12、D【解析】計(jì)算,然后等價(jià)于在(0,+∞)由2個(gè)不同的實(shí)數(shù)根,然后計(jì)算即可.【詳解】的定義域是(0,+∞),,若函數(shù)有兩個(gè)不同的極值點(diǎn),則在(0,+∞)由2個(gè)不同的實(shí)數(shù)根,故,解得:,故選:D.【點(diǎn)睛】本題考查根據(jù)函數(shù)極值點(diǎn)個(gè)數(shù)求參,考查計(jì)算能力以及思維轉(zhuǎn)變能力,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè),由邊角關(guān)系可得,,,在和中,利用余弦定理列方程,結(jié)合可解得的值,進(jìn)而可得長(zhǎng).【詳解】設(shè),因?yàn)椋?,,所以,,?在中,,即①.,在中,,即②,因?yàn)椋寓佗趦墒较嗉涌傻茫?,解得:,則,故答案為:.14、【解析】曲線是拋物線的右半部分,是拋物線的焦點(diǎn),作出拋物線的準(zhǔn)線,把轉(zhuǎn)化為到準(zhǔn)線的距離,則到準(zhǔn)線的距離為所求距離和的最小值【詳解】易知曲線是拋物線的右半部分,如圖,因?yàn)閽佄锞€的準(zhǔn)線方程為,是拋物線的焦點(diǎn),所以等于到直線的距離.過(guò)作該直線的垂線,垂足為,則的最小值為故答案為:15、【解析】利用二倍角公式求出,即可得到,再利用余弦定理及基本不等式求出的取值范圍,再利用正弦定理求出外接圓的半徑,即可求出外接圓的面積;【詳解】解:因?yàn)?,所以,解得或(舍去).又為銳角三角形,所以.因?yàn)?,?dāng)且僅當(dāng)時(shí)等號(hào)成立,所以.外接圓的半徑,故外接圓面積的最小值為故答案為:16、①.1.6②.3.65千##3650【解析】根據(jù)給定數(shù)表求出樣本中心點(diǎn),代入即可求得,取可求出該年進(jìn)口總額.【詳解】由數(shù)表得:,,因此,回歸直線過(guò)點(diǎn),由,解得,此時(shí),,當(dāng)時(shí),即,解得,所以,預(yù)計(jì)該年進(jìn)口總額為千億元.故答案為:1.6;3.65千三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】(1)根據(jù)關(guān)于的不等式的解集為,得到和1是方程的兩個(gè)實(shí)數(shù)根,再利用韋達(dá)定理求解.(2)根據(jù)關(guān)于的不等式的解集為.又因?yàn)?,利用判別式法求解.【詳解】(1)因?yàn)殛P(guān)于的不等式的解集為,所以和1是方程的兩個(gè)實(shí)數(shù)根,由韋達(dá)定理可得,得(2)因?yàn)殛P(guān)于的不等式的解集為因?yàn)樗裕獾?,故的取值范圍為【點(diǎn)睛】本題主要考查一元二次不等式的解集和恒成立問(wèn)題,還考查了運(yùn)算求解的能力,屬于中檔題.18、(1)(2)【解析】(1)設(shè),根據(jù)AB的中點(diǎn)坐標(biāo)可得,再利用點(diǎn)差法求得直線的斜率,即可求出直線方程;(2)易得直線過(guò)左焦點(diǎn),聯(lián)立直線和橢圓方程,消,利用韋達(dá)定理求得,再根據(jù)即可得出答案.【小問(wèn)1詳解】解:設(shè),因?yàn)榈闹悬c(diǎn)坐標(biāo)為,所以,則,兩式相減得,即,即,所以直線l的斜率為1,所以直線l的方程為,即;【小問(wèn)2詳解】在直線中,當(dāng)時(shí),,由橢圓:,得,則直線過(guò)點(diǎn),聯(lián)立,消整理得,則,.19、(1)無(wú)論選擇哪個(gè)條件答案均為;(2).【解析】(1)先根據(jù)題設(shè)條件求解,然后根據(jù)選擇的條件求解;(2)先求,然后利用分組求和的方法求解.【小問(wèn)1詳解】設(shè)的公差為,因?yàn)?,;所以,解得,所?選①:設(shè)的公比為,則;由題意得,因?yàn)?,所以,解得或(舍);所?選②:由,當(dāng)時(shí),,因?yàn)?,所以;?dāng)時(shí),,整理得;即是首項(xiàng)和公比均為2的等比數(shù)列,所以.選③:因?yàn)?,,所以,解得;所?【小問(wèn)2詳解】由(1)得;所以.20、(1)證明見(jiàn)解析,(2)證明見(jiàn)解析【解析】(1)令可求得的值,令,由可得,兩式作差可得,利用等比數(shù)列的定義可證得結(jié)論成立,確定該數(shù)列的首項(xiàng)和公比,可求得數(shù)列的通項(xiàng)公式;(2)求得,利用錯(cuò)位相減法可求得,結(jié)合數(shù)列的單調(diào)性可證得結(jié)論成立.【小問(wèn)1詳解】證明:當(dāng)時(shí),,解得,當(dāng)時(shí),由可得,上述兩個(gè)等式作差得,所以,,則,因?yàn)?,則,可得,,,以此類推,可知對(duì)任意的,,所以,,因此,數(shù)列是等比數(shù)列,且首項(xiàng)為,公比為,所以,,解得.【小問(wèn)2詳解】證明:,則,其中,所以,數(shù)列為單調(diào)遞減數(shù)列,則,,,上式下式,得,所以,,因此,.21、(Ⅰ)證明見(jiàn)解析;(Ⅱ)【解析】(Ⅰ)證明,根據(jù)得到,得到證明.(Ⅱ)如圖所示,分別以為軸建立空間直角坐標(biāo)系,平面的法向量,,計(jì)算向量夾角得到答案.【詳解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如圖所示:分別以為軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量,則,即,取得到,,設(shè)直線與平面所成角為故.【點(diǎn)睛】本題考查了線面垂直,線面夾角,意在考查學(xué)生的空間想象能力和計(jì)算能力.22、(1)或

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論