




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆四川省射洪中學(xué)數(shù)學(xué)高二上期末監(jiān)測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.金剛石的成分為純碳,是自然界中天然存在的最堅(jiān)硬物質(zhì),它的結(jié)構(gòu)是由8個(gè)等邊三角形組成的正八面體.若某金剛石的棱長(zhǎng)為2,則它的體積為()A. B.C. D.2.《萊茵德紙草書》(RhindPapyrus)是世界上最古老的數(shù)學(xué)著作之一.書中有這樣一道題目:把93個(gè)面包分給5個(gè)人,使每個(gè)人所得面包個(gè)數(shù)成等比數(shù)列,且使較小的兩份之和等于中間一份的四分之三,則最大的一份是()個(gè)A.12 B.24C.36 D.483.已知點(diǎn)在橢圓上,與關(guān)于原點(diǎn)對(duì)稱,,交軸于點(diǎn),為坐標(biāo)原點(diǎn),,則橢圓離心率為()A. B.C. D.4.已知圓的圓心在軸上,半徑為2,且與直線相切,則圓的方程為A. B.或C. D.或5.命題“,”的否定是()A., B.,C, D.,6.已知P是橢圓上的一點(diǎn),是橢圓的兩個(gè)焦點(diǎn)且,則的面積是()A. B.2C. D.17.設(shè)P是雙曲線上的點(diǎn),若,是雙曲線的兩個(gè)焦點(diǎn),則()A.4 B.5C.8 D.108.命題“,”否定形式是()A., B.,C., D.,9.已知函數(shù)f(x)的圖象如圖所示,則導(dǎo)函數(shù)f(x)的圖象可能是()A. B.C. D.10.已知數(shù)列滿足,且,那么()A. B.C. D.11.在中,,,且BC邊上的高為,則滿足條件的的個(gè)數(shù)為()A.3 B.2C.1 D.012.已知集合,,則A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)和,圓,當(dāng)圓C與線段沒(méi)有公共點(diǎn)時(shí),則實(shí)數(shù)m的取值范圍為_(kāi)__________14.已知,若在區(qū)間上有且只有一個(gè)極值點(diǎn),則a的取值范圍是______15.已知為橢圓C:的兩個(gè)焦點(diǎn),P,Q為C上關(guān)于坐標(biāo)原點(diǎn)對(duì)稱的兩點(diǎn),且,則四邊形的面積為_(kāi)_______16.已知是雙曲線的左、右焦點(diǎn),點(diǎn)M是雙曲線E上的任意一點(diǎn)(不是頂點(diǎn)),過(guò)作角平分線的垂線,垂足為N,O是坐標(biāo)原點(diǎn).若,則雙曲線E的漸近線方程為_(kāi)_________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知圓.(1)若不過(guò)原點(diǎn)的直線與圓相切,且直線在兩坐標(biāo)軸上的截距相等,求直線的方程;(2)求與圓和直線都相切的最小圓的方程.18.(12分)如圖,正方形與梯形所在的平面互相垂直,,,|AB|=|AD|=2,|CD|=4,為的中點(diǎn)(1)求證:平面平面;(2)求二面角的正切值19.(12分)已知橢圓經(jīng)過(guò)點(diǎn),(1)求橢圓的方程;(2)已知直線的傾斜角為銳角,與圓相切,與橢圓交于、兩點(diǎn),且的面積為,求直線的方程20.(12分)已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,且的面積為(為坐標(biāo)原點(diǎn))(1)求拋物線的標(biāo)準(zhǔn)方程;(2)點(diǎn)、是拋物線上異于原點(diǎn)的兩點(diǎn),直線、的斜率分別為、,若,求證:直線恒過(guò)定點(diǎn)21.(12分)已知圓(1)求圓心的坐標(biāo)和圓的面積;(2)若直線與圓相交于兩點(diǎn),求弦長(zhǎng)22.(10分)寫出下列命題的否定,并判斷它們的真假:(1):任意兩個(gè)等邊三角形都是相似的;(2):,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由幾何關(guān)系先求出一個(gè)正四面體的高,再結(jié)合錐體體積公式即可求解正八面體的體積.【詳解】如圖,設(shè)底面中心為,連接,由幾何關(guān)系知,,則正八面體體積為.故選:C2、D【解析】設(shè)等比數(shù)列的首項(xiàng)為,公比,根據(jù)題意,由求解.【詳解】設(shè)等比數(shù)列的首項(xiàng)為,公比,由題意得:,即,解得,所以,故選:D3、B【解析】由,得到,結(jié)合,得到,進(jìn)而求得,得出,結(jié)合離心率的定義,即可求解.【詳解】設(shè),則,由,可得,所以,因?yàn)?,可得,又由,兩式相減得,即,即,又因?yàn)?,所以,即又由,所以,解?故選:B.4、D【解析】設(shè)圓心坐標(biāo),由點(diǎn)到直線距離公式可得或,進(jìn)而求得答案【詳解】設(shè)圓心坐標(biāo),因?yàn)閳A與直線相切,所以由點(diǎn)到直線的距離公式可得,解得或.因此圓的方程為或.【點(diǎn)睛】本題考查利用直線與圓的位置關(guān)系求圓的方程,屬于一般題5、D【解析】由含量詞命題否定的定義,寫出命題的否定即可【詳解】命題“,”的否定是:,,故選:D.6、A【解析】設(shè),先求出m、n,再利用面積公式即可求解.【詳解】在中,設(shè),則,解得:.因?yàn)?,所以,所以的面積是.故選:A7、C【解析】根據(jù)雙曲線的定義可得:,結(jié)合雙曲線的方程可得答案.【詳解】由雙曲線可得根據(jù)雙曲線的定義可得:故選:C8、C【解析】利用含有一個(gè)量詞的命題的否定的定義求解.【詳解】因?yàn)槊}“,是特稱命題,所以其否定是全稱命題,即為,故選:C9、D【解析】根據(jù)導(dǎo)函數(shù)正負(fù)與原函數(shù)單調(diào)性關(guān)系可作答【詳解】原函數(shù)在上先減后增,再減再增,對(duì)應(yīng)到導(dǎo)函數(shù)先負(fù)再正,再負(fù)再正,且原函數(shù)在處與軸相切,故可知,導(dǎo)函數(shù)圖象為D故選:D10、D【解析】由遞推公式得到,,,再結(jié)合已知即可求解.【詳解】解:由,得,,又,那么故選:D11、B【解析】利用等面積法求得,再利用正弦定理求得,利用內(nèi)角和的關(guān)系及兩角和差化積公式,二倍角公式轉(zhuǎn)化為,再利用正弦函數(shù)的性質(zhì)求滿足條的的個(gè)數(shù),即可求解.【詳解】由三角形的面積公式知,即由正弦定理知所以,即,即,即利用兩角和的正弦公式結(jié)合二倍角公式化簡(jiǎn)得又,則,,且由正弦函數(shù)的性質(zhì)可知,滿足的有2個(gè),即滿足條件的的個(gè)數(shù)為2.故選:B12、B【解析】由交集定義直接求解即可.【詳解】集合,,則.故選B.【點(diǎn)睛】本題主要考查了集合的交集運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】當(dāng)點(diǎn)和都在圓的內(nèi)部時(shí),結(jié)合點(diǎn)與圓的位置關(guān)系得出實(shí)數(shù)m的取值范圍,再由圓心到直線的距離大于半徑得出實(shí)數(shù)m的取值范圍.【詳解】當(dāng)點(diǎn)和都在圓的內(nèi)部時(shí),,解得或直線的方程為,即圓心到直線的距離為,當(dāng)圓心到直線的距離大于半徑時(shí),,且.綜上,實(shí)數(shù)m的取值范圍為.故答案為:14、【解析】求導(dǎo)得,進(jìn)而根據(jù)題意在上有且只有一個(gè)變號(hào)零點(diǎn),再根據(jù)零點(diǎn)的存在性定理求解.【詳解】解:,∵在區(qū)間上有且只有一個(gè)極值點(diǎn),∴在上有且只有一個(gè)變號(hào)零點(diǎn),∴,解得∴a的取值范圍是.故答案為:15、【解析】根據(jù)已知可得,設(shè),利用勾股定理結(jié)合,求出,四邊形面積等于,即可求解.【詳解】因?yàn)闉樯详P(guān)于坐標(biāo)原點(diǎn)對(duì)稱的兩點(diǎn),且,所以四邊形為矩形,設(shè),則,所以,,即四邊形面積等于.故答案為:.16、【解析】延長(zhǎng)交于點(diǎn),利用角平分線結(jié)合中位線和雙曲線定義求得的關(guān)系,然后利用,及漸近線方程即可求得結(jié)果.【詳解】延長(zhǎng)交于點(diǎn),∵是的平分線,,,又是中點(diǎn),所以,且,又,,,又,雙曲線E的漸近線方程為故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)或;(2).【解析】(1)根據(jù)題意設(shè)出直線的方程,然后根據(jù)直線與圓相切,即可求出答案;(2)首先根據(jù)題意判斷出最小圓的圓心在直線上,且最小圓的半徑為,然后設(shè)出最小圓的圓心為,則圓心到直線的距離為,從而可求出答案.【小問(wèn)1詳解】因?yàn)橹本€不過(guò)原點(diǎn),設(shè)直線的方程為,圓的標(biāo)準(zhǔn)方程為,若直線與圓相切,則,即,解得或者3,所以直線的方程為或者;【小問(wèn)2詳解】因?yàn)椋灾本€與圓相離,所以所求最小圓的圓心一定在圓的圓心到直線的垂線段上,即最小圓的圓心在直線上,且最小圓的半徑為,設(shè)最小圓的圓心為,則圓心到直線的距離為,所以,即,解得(舍)或,所以最小的圓的方程為.18、(1)見(jiàn)解析;(2).【解析】(1)證明BC⊥平面BDE即可;(2)以D為原點(diǎn),DA、DC、DE分別為x軸、y軸、z軸建立空間直角坐標(biāo)系D-xyz,求平面BMD和平面BCD的法向量,利用法向量的求二面角的余弦,再求正切﹒【小問(wèn)1詳解】∵ADEF為正方形∴ED⊥AD又∵正方形ADEF與梯形ABCD所在的平面互相垂直,且ED?平面ADEF∴ED⊥平面ABCD∵BC?平面ABCD∴ED⊥BC在直角梯形ABCD中,|AB|=|AD|=2,|CD|=4,則,|BD|=2,在△BCD中,,∴BC⊥BD∵DE∩BD=D,DE與BD平面BDE,∴BC⊥平面BDE又∵BC?平面BEC∴平面BDE⊥平面BEC;【小問(wèn)2詳解】由(1)知ED⊥平面ABCD∵CD平面ABCD,∴CD⊥ED,∴DA,DC,DE三線兩兩垂直,故以D為原點(diǎn),DA、DC、DE分別為x軸、y軸、z軸建立空間直角坐標(biāo)系D-xyz:則,則設(shè)為平面BDM的法向量,則,取,取平面BCD的法向量為,設(shè)二面角的大小為θ,則,∴.19、(1)(2)【解析】(1)將點(diǎn)M、N的坐標(biāo)代入橢圓方程計(jì)算,求出a、b的值即可;(2)設(shè)l的方程為:,,根據(jù)直線與圓的位置關(guān)系可得,直線方程聯(lián)立橢圓方程并消去y,利用韋達(dá)定理表示出,根據(jù)弦長(zhǎng)公式求出,進(jìn)而列出關(guān)于k的方程,解之即可.【小問(wèn)1詳解】橢圓經(jīng)過(guò)點(diǎn),則,解得,【小問(wèn)2詳解】設(shè)l的方程為:與圓相切設(shè)點(diǎn),∴(則Δ>0,,,,,,,,,故,20、(1);(2)證明見(jiàn)解析.【解析】(1)由點(diǎn)在拋物線上可得出,再利用三角形的面積公式可得出關(guān)于的等式,解出正數(shù)的值,即可得出拋物線的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)、,利用斜率公式結(jié)合已知條件可得出的值,分析可知直線不與軸垂直,可設(shè)直線的方程為,將該直線方程與拋物線的方程聯(lián)立,利用韋達(dá)定理求出的值,即可得出結(jié)論.【小問(wèn)1詳解】解:拋物線的焦點(diǎn)為,由已知可得,則,,,解得,因此,拋物線的方程為.【小問(wèn)2詳解】證明:設(shè)點(diǎn)、,則,可得.若直線軸,則該直線與拋物線只有一個(gè)交點(diǎn),不合乎題意.設(shè)直線的方程為,聯(lián)立,可得,由韋達(dá)定理可得,可得,此時(shí),合乎題意.所以,直線的方程為,故直線恒過(guò)定點(diǎn).21、(1)圓心,面積為;(2).【解析】(1)將圓化為標(biāo)準(zhǔn)方程,進(jìn)而求出圓心、半徑和圓的面積;(2)求出圓心到直線的距離,進(jìn)而通過(guò)勾股定理求得答案.【小問(wèn)1詳解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 抵押借款協(xié)議書(二零二五年度)-智能交通系統(tǒng)建設(shè)
- 感謝生活作文600字十篇
- 2025年安徽體育運(yùn)動(dòng)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)傾向性測(cè)試題庫(kù)及答案1套
- 現(xiàn)代企業(yè)組織結(jié)構(gòu)變革與趨勢(shì)
- 婚慶合同無(wú)故終止合同范本
- 中國(guó)電動(dòng)腳踏板行業(yè)市場(chǎng)調(diào)研報(bào)告-2025-02-零部件
- 科技引領(lǐng)下的跨境物流優(yōu)化與創(chuàng)新實(shí)踐
- 生產(chǎn)現(xiàn)場(chǎng)的5S管理與品質(zhì)保障
- 眼部皮膚的特別護(hù)理如何保持明亮雙眼
- 2024年長(zhǎng)沙市南雅馬欄山文創(chuàng)中學(xué)教師考試真題
- 2025年江蘇揚(yáng)州市儀征市眾鑫建設(shè)開(kāi)發(fā)有限公司招聘筆試參考題庫(kù)附帶答案詳解
- 大象版四年級(jí)下冊(cè)《科學(xué)》全套教學(xué)課件
- 期末考試質(zhì)量分析教學(xué)成績(jī)匯報(bào)模板
- 應(yīng)急指揮調(diào)度與指揮中心建設(shè)
- 2025年三方運(yùn)輸合作協(xié)議經(jīng)典版(三篇)
- 2025年《贏在執(zhí)行》心得體會(huì)(4篇)
- 核心素養(yǎng)導(dǎo)向下的小學(xué)語(yǔ)文跨學(xué)科學(xué)習(xí)研究
- 小紅書搜索推廣營(yíng)銷師認(rèn)證考試題(附答案)
- T-GDSAIA 001-2024 非充氣彈性支撐輪 術(shù)語(yǔ)及其定義
- 湖南省長(zhǎng)沙市2024年七年級(jí)上學(xué)期期末數(shù)學(xué)試卷【附答案】
- 護(hù)苗行動(dòng)課件
評(píng)論
0/150
提交評(píng)論