2024屆新疆哈密石油中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第1頁
2024屆新疆哈密石油中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第2頁
2024屆新疆哈密石油中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第3頁
2024屆新疆哈密石油中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第4頁
2024屆新疆哈密石油中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆新疆哈密石油中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線上的點到該拋物線焦點的距離為,則拋物線的方程是()A. B.C. D.2.若直線:與直線:平行,則a的值是()A.1 B.C.或6 D.或73.直線經(jīng)過兩個定點,,則直線傾斜角大小是()A. B.C. D.4.已知數(shù)列滿足,若.則的值是()A. B.C. D.5.設(shè)是可導(dǎo)函數(shù),當,則()A.2 B.C. D.6.已知橢圓上的一點到橢圓一個焦點的距離為3,則點到另一焦點的距離為()A.1 B.3C.5 D.77.已知呈線性相關(guān)的變量x與y的部分數(shù)據(jù)如表所示:若其回歸直線方程是,則()x24568y34.5m7.59A.6.5 B.6C.6.1 D.78.點,是橢圓的左焦點,是橢圓上任意一點,則的取值范圍是()A. B.C. D.9.已知向量,,若與共線,則實數(shù)值為()A. B.C.1 D.210.設(shè)P是雙曲線上的點,若,是雙曲線的兩個焦點,則()A.4 B.5C.8 D.1011.設(shè)集合,集合,當有且僅有一個元素時,則r的取值范圍為()A.或 B.或C.或 D.或12.為推動黨史學(xué)習(xí)教育各項工作扎實開展,營造“學(xué)黨史、悟思想、辦實事、開新局”的濃厚氛圍,某校黨委計劃將中心組學(xué)習(xí)、專題報告會、黨員活動日、主題班會、主題團日這五種活動分5個階段安排,以推動黨史學(xué)習(xí)教育工作的進行,若主題班會、主題團日這兩個階段相鄰,且中心組學(xué)習(xí)必須安排在前兩階段并與黨員活動日不相鄰,則不同的安排方案共有()A.10種 B.12種C.16種 D.24種二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)a為實數(shù),若直線與直線平行,則a值為______.14.假設(shè)要考查某公司生產(chǎn)的袋裝牛奶的質(zhì)量是否達標,現(xiàn)從800袋牛奶中抽取60袋進行檢驗,利用隨機數(shù)法抽取樣本時,先將800袋牛奶按000,001,,799進行編號,若從隨機數(shù)表第7行第8列的數(shù)開始向右讀,則得到的第4個的樣本個體的編號是______(下面摘取了隨機數(shù)表第7行到第9行)84421753315724550688770474476721763350258392120676630163785916955667199810507175128673580744395238793321123429786456078252420744381551001342996602795415.已知數(shù)列滿足,則__________.16.已知直線與雙曲線交于兩點,則該雙曲線的離心率的取值范圍是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)當時,求函數(shù)的極值;(2)當時,若恒成立,求實數(shù)a的取值范圍18.(12分)如圖,四邊形為矩形,,且平面平面.(1)若,分別是,的中點,求證:平面;(2)若是等邊三角形,求平面與平面夾角的余弦值.19.(12分)已知函數(shù),為自然對數(shù)的底數(shù).(1)當時,證明,,;(2)若函數(shù)在上存在極值點,求實數(shù)的取值范圍.20.(12分)如圖,在四棱錐中,平面底面ABCD,,,,,(1)證明:是直角三角形;(2)求平面PCD與平面PAB的夾角的余弦值21.(12分)已知橢圓C:的離心率為,左、右焦點分別為、,橢圓上的點到左焦點最近的距離為.(1)求橢圓C的方程;(2)若經(jīng)過點的直線與橢圓C交于M,N兩點,當?shù)拿娣e取得最大值時,求直線的方程.22.(10分)如圖,四棱臺的底面為正方形,面,(1)求證:平面;(2)若平面平面,求直線m與平面所成角的正弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由拋物線知識得出準線方程,再由點到焦點的距離等于其到準線的距離求出,從而得出方程.【詳解】由題意知,則準線為,點到焦點的距離等于其到準線的距離,即,∴,則故選:B.2、D【解析】根據(jù)直線平行的充要條件即可求出【詳解】依題意可知,顯然,所以由可得,,解得或7故選:D3、A【解析】由兩點坐標求出斜率,再得傾斜角【詳解】由已知直線的斜率為,所以傾斜角為故選:A4、D【解析】由,轉(zhuǎn)化為,再由求解.【詳解】因為數(shù)列滿足,所以,即,因為,所以,所以,故選:D5、C【解析】由導(dǎo)數(shù)的定義可得,即可得答案【詳解】根據(jù)題意,,故.故選:C6、D【解析】由橢圓的定義可以直接求得點到另一焦點的距離.【詳解】設(shè)橢圓的左、右焦點分別為、,由已知條件得,由橢圓定義得,其中,則.故選:.7、A【解析】根據(jù)回歸直線過樣本點的中心進行求解即可.【詳解】由題意可得,,則,解得故選:A.8、A【解析】由,當三點共線時,取得最值【詳解】設(shè)是橢圓的右焦點,則又因為,,所以,則故選:A9、D【解析】根據(jù)空間向量共線有,,結(jié)合向量的坐標即可求的值.【詳解】由題設(shè),有,,則,可得.故選:D10、C【解析】根據(jù)雙曲線的定義可得:,結(jié)合雙曲線的方程可得答案.【詳解】由雙曲線可得根據(jù)雙曲線的定義可得:故選:C11、B【解析】由已知得集合M表示以點圓心,以2半徑左半圓,與y軸的交點為,集合N表示以點為圓心,以r為半徑的圓,當圓C與圓O相外切于點P,有且僅有一個元素時,圓C過點M時,有且有兩個元素,當圓C過點N,有且僅有一個元素,由此可求得r的取值范圍.【詳解】解:由得,所以集合M表示以點圓心,以2半徑的左半圓,與y軸的交點為,集合表示以點為圓心,以r為半徑的圓,如下圖所示,當圓C與圓O相外切于點P時,有且僅有一個元素時,此時,當圓C過點M時,有兩個元素,此時,所以,當圓C過點N時,有且僅有一個元素,此時,所以,所以當有且僅有一個元素時,則r的取值范圍為或,故選:B.12、A【解析】對中心組學(xué)習(xí)所在的階段分兩種情況討論得解.【詳解】解:如果中心組學(xué)習(xí)在第一階段,主題班會、主題團日在第二、三階段,則其它活動有2種方法;主題班會、主題團日在第三、四階段,則其它活動有1種方法;主題班會、主題團日在第四、五階段,則其它活動有1種方法,則此時共有種方法;如果中心組學(xué)習(xí)在第二階段,則第一階段只有1種方法,后面的三個階段有種方法.綜合得不同的安排方案共有10種.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)兩直線平行得到,解方程組即可求出結(jié)果.【詳解】由題意可知,解得,故答案為:.14、【解析】根據(jù)隨機數(shù)表法依次列舉出來即可.【詳解】根據(jù)隨機數(shù)表法最先檢測的3袋牛奶編號為:331、572、455、068.故答案為:068.15、【解析】由題,用累乘法求得通項公式:,則,通過裂項求和即可得出結(jié)果.【詳解】由題,所以累乘法求通項公式:,所以,經(jīng)驗證時,符合.所以,則.故答案為:16、【解析】分析可知,由可求得結(jié)果.【詳解】雙曲線的漸近線方程為,由題意可知,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)極大值;極小值(2)【解析】(1)利用導(dǎo)數(shù)來求得的極大值和極小值.(2)由不等式分離常數(shù),通過構(gòu)造函數(shù)法,結(jié)合導(dǎo)數(shù)來求得的取值范圍.【小問1詳解】當時,,,令,可得或2所以在區(qū)間遞增;在區(qū)間遞減.故當時.函數(shù)有極大值,故當時,函數(shù)有極小值;【小問2詳解】由,有,可化為,令,有,令,有,令,可得,可得函數(shù)的增區(qū)間為,減區(qū)間為,有,可知,有函數(shù)為減函數(shù),有,故當時,若恒成立,則實數(shù)a的取值范圍為【點睛】求解不等式恒成立問題,可利用分離常數(shù)法,結(jié)合導(dǎo)數(shù)求最值來求解.在利用導(dǎo)數(shù)研究函數(shù)的過程中,如果一階導(dǎo)數(shù)無法解決,可考慮利用二階導(dǎo)數(shù)來進行求解.18、(1)證明見解析(2)【解析】(1)通過構(gòu)造平行四邊形,在平面中找到即可證明(2)建立直角坐標系,通過兩個面的法向量夾角的余弦值求出面面夾角的余弦值【小問1詳解】證明:設(shè)為的中點,連接,,因為,分別為,的中點.所以且,又,為的中點,所以,且,所以四邊形是平行四邊形,所以,又平面,平面,所以平面;【小問2詳解】取的中點,連接,,則,∵平面平面,平面平面,∴平面,∵是等邊三角形,為中點,∴,分別以,,所在直線為,,軸建立如圖所示的空間直角坐標系,則,,,,,,,,.設(shè)為平面的一個法向量,則有即取可取,設(shè)為平面的一個法向量,則有即可取,所以,設(shè)平面與平面的夾角為,則,∴,即平面與平面夾角的余弦值為.19、(1)證明見解析:(2)【解析】(1)代入,求導(dǎo)分析函數(shù)單調(diào)性,再的最小值即可證明.(2),若函數(shù)在上存在兩個極值點,則在上有根.再分,與,利用函數(shù)的零點存在定理討論導(dǎo)函數(shù)的零點即可.【詳解】(1)證明:當時,,則,當時,,則,又因為,所以當時,,僅時,,所以在上是單調(diào)遞減,所以,即.(2),因為,所以,①當時,恒成立,所以在上單調(diào)遞增,沒有極值點.②當時,在區(qū)間上單調(diào)遞增,因為.當時,,所以在上單調(diào)遞減,沒有極值點.當時,,所以存在,使當時,時,所以在處取得極小值,為極小值點.綜上可知,若函數(shù)在上存在極值點,則實數(shù).【點睛】本題主要考查了利用導(dǎo)函數(shù)求解函數(shù)的單調(diào)性與最值,進而證明不等式的方法.同時也考查了利用導(dǎo)數(shù)分析函數(shù)極值點的問題,需要結(jié)合零點存在定理求解.屬于難題.20、(1)證明見解析(2)【解析】(1)連接BD,在四邊形ABCD中求得,在中,取得,得到,由線面垂直的性質(zhì)證得平面,得到,再由線面垂直的判定定理,證得平面PBD,進而得到,即可證得是直角三角形(2)以為原點,以所在直線為x軸,過點且與平行直線為y軸,所在直線為z軸,建立的空間直角坐標系,分別求得平面和平面的法向量,利用向量的夾角公式,即可求解.【小問1詳解】證明:如圖所示,連接BD,因為四邊形中,可得,,,所以,,則在中,由余弦定理可得,所以,所以因為平面底面,平面底面,底面ABCD,所以平面PAB,因為平面PAB,所以,因為,,所以平面PBD因為平面PBD,所以,即是直角三角形【小問2詳解】解:由(1)知平面PAB,取AB的中點O,連接PO,因為,所以,因為平面,平面底面,平面底面,所以底面,以為原點,以所在直線為x軸,過點且與平行的直線為y軸,所在直線為z軸,建立如圖所示的空間直角坐標系,設(shè),則,,,,,可得,,,設(shè)平面的一個法向量為,則,令,可得,,所以,因為是平面的一個法向量,所以,即平面與平面的夾角的余弦值為21、(1)(2)【解析】(1)根據(jù)題意得,,進而解方程即可得答案;(2)根據(jù)題意設(shè)直線的方程,,,進而,再聯(lián)立方程,結(jié)合韋達定理求解即可.【小問1詳解】解:因為橢圓C:的離心率為,所以,因為橢圓上的點到左焦點最近的距離為,所以所以,所以橢圓C的方程為.【小問2詳解】解:根據(jù)題意,設(shè)直線的方程,,設(shè),聯(lián)立方程得,所以,解得或.,所以的面積為令,則,當且僅當,即時,等號成立.所以當?shù)拿娣e取得最大值時,直線的方程為.22、(1)證明見解析;(2).【解析】(1):連結(jié)交交于點O,連結(jié),,通過四棱臺的性質(zhì)以及給定長度證明,從而證出,利用線面平行的判定定理可證明面;(2)利用線面平行的性質(zhì)定理以及基本事實可證明,即求與平面所成角的正弦值;通過條件以及面面垂直的判定定理可證明面面,則為與平面所成角,利用余弦定理求出余弦值,即可求出正弦值.【詳解】(1)證明:連結(jié)交交于點O,連結(jié),,由多面體為四棱臺可知四點共面,且面面,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論