福建省三明一中2024屆高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題含解析_第1頁
福建省三明一中2024屆高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題含解析_第2頁
福建省三明一中2024屆高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題含解析_第3頁
福建省三明一中2024屆高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題含解析_第4頁
福建省三明一中2024屆高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

福建省三明一中2024屆高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.魏晉時(shí)期數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù),他在《九章算術(shù)》方田章圓田術(shù)中指出:“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣.”這是注述中所用的割圓術(shù)是一種無限與有限的轉(zhuǎn)化過程,比如在正數(shù)中的“”代表無限次重復(fù),設(shè),則可以利用方程求得,類似地可得到正數(shù)()A.2 B.3C. D.2.直線的傾斜角,則其斜率的取值范圍為()A. B.C. D.3.已知直線的方程為,則該直線的傾斜角為()A. B.C. D.4.設(shè)函數(shù),當(dāng)自變量t由2變到2.5時(shí),函數(shù)的平均變化率是()A.5.25 B.10.5C.5.5 D.115.有6本不同的書,按下列方式進(jìn)行分配,其中分配種數(shù)正確的是()A.分給甲、乙、丙三人,每人各2本,有15種分法;B.分給甲、乙、丙三人中,一人4本,另兩人各1本,有180種分法;C.分給甲乙每人各2本,分給丙丁每人各1本,共有90種分法;D.分給甲乙丙丁四人,有兩人各2本,另兩人各1本,有1080種分法;6.在平形六面體中,其中,,,,,則的長為()A. B.C. D.7.若橢圓與直線交于兩點(diǎn),過原點(diǎn)與線段AB中點(diǎn)的直線的斜率為,則A. B.C. D.28.在正方體中,分別為的中點(diǎn),為側(cè)面的中心,則異面直線與所成角的余弦值為()A. B.C. D.9.已知圓柱的表面積為定值,當(dāng)圓柱的容積最大時(shí),圓柱的高的值為()A.1 B.C. D.210.方程表示的曲線是()A.一個(gè)橢圓和一個(gè)點(diǎn) B.一個(gè)雙曲線的右支和一條直線C.一個(gè)橢圓一部分和一條直線 D.一個(gè)橢圓11.已知遞增等比數(shù)列的前n項(xiàng)和為,,且,則與的關(guān)系是()A. B.C. D.12.已知、是橢圓和雙曲線的公共焦點(diǎn),是它們的一個(gè)公共點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,則()A.2 B.3C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù)x,y滿足約束條件,則的最小值為______.14.已知數(shù)列滿足,則的最小值為__________.的前20項(xiàng)和為________15.已知平面,過空間一定點(diǎn)P作一直線l,使得直線l與平面,所成的角都是30°,則這樣的直線l有______條16.若向量,且夾角的余弦值為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)命題p:,命題q:關(guān)于x的方程無實(shí)根.(1)若p為真命題,求實(shí)數(shù)m的取值范圍;(2)若為假命題,為真命題,求實(shí)數(shù)m的取值范圍18.(12分)已知函數(shù),且a0(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;(2)記函數(shù),若函數(shù)有兩個(gè)零點(diǎn),①求實(shí)數(shù)a的取值范圍;②證明:19.(12分)在平面直角坐標(biāo)系xOy中,橢圓C:的左,右頂點(diǎn)分別為A、B,點(diǎn)F是橢圓的右焦點(diǎn),,(1)求橢圓C的方程;(2)不過點(diǎn)A的直線l交橢圓C于M、N兩點(diǎn),記直線l、AM、AN的斜率分別為k、、.若,證明直線l過定點(diǎn),并求出定點(diǎn)的坐標(biāo)20.(12分)已知三棱柱的側(cè)棱垂直于底面,,,,,分別是,的中點(diǎn).(Ⅰ)證明:平面;(Ⅱ)求二面角的余弦值.21.(12分)等差數(shù)列中,,(1)求數(shù)列的通項(xiàng)公式;(2)若滿足數(shù)列為遞增數(shù)列,求數(shù)列前項(xiàng)和22.(10分)已知函數(shù)(1)當(dāng)時(shí),求的單調(diào)區(qū)間與極值;(2)若不等式在區(qū)間上恒成立,求k的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】設(shè),則,解方程可得結(jié)果.【詳解】設(shè),則且,所以,所以,所以,所以或(舍).所以.故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:設(shè)是解題關(guān)鍵.2、B【解析】根據(jù)傾斜角和斜率的關(guān)系,確定正確選項(xiàng).【詳解】直線的傾斜角為,則斜率為,在上為增函數(shù).由于直線的傾斜角,所以其斜率的取值范圍為,即.故選:B【點(diǎn)睛】本小題主要考查傾斜角和斜率的關(guān)系,屬于基礎(chǔ)題.3、D【解析】設(shè)直線傾斜角為,則,即可求出.【詳解】設(shè)直線的傾斜角為,則,又因?yàn)?,所?故選:D.4、B【解析】利用平均變化率的公式即得.【詳解】∵,∴.故選:B.5、D【解析】根據(jù)題意,分別按照選項(xiàng)說法列式計(jì)算驗(yàn)證即可做出判斷.【詳解】選項(xiàng)A,6本不同的書分給甲、乙、丙三人,每人各2本,有種分配方法,故該選項(xiàng)錯(cuò)誤;選項(xiàng)B,6本不同的書分給甲、乙、丙三人,一人4本,另兩人各1本,先將6本書分成4-1-1的3組,再將三組分給甲乙丙三人,有種分配方法,故該選項(xiàng)錯(cuò)誤;選項(xiàng)C,6本不同的書分給甲乙每人各2本,有種方法,其余分給丙丁每人各1本,有種方法,所以不同的分配方法有種,故該選項(xiàng)錯(cuò)誤;選項(xiàng)D,先將6本書分為2-2-1-14組,再將4組分給甲乙丙丁4人,有種方法,故該選項(xiàng)正確.故選:D.6、B【解析】根據(jù)空間向量基本定理、加法的運(yùn)算法則,結(jié)合空間向量數(shù)量積的運(yùn)算性質(zhì)進(jìn)行求解即可.【詳解】因?yàn)槭瞧叫辛骟w,所以,所以有:,因此有:,因?yàn)椋?,,,,所以,所以,故選:B7、D【解析】細(xì)查題意,把代入橢圓方程,得,整理得出,設(shè)出點(diǎn)的坐標(biāo),由根與系數(shù)的關(guān)系可以推出線段的中點(diǎn)坐標(biāo),再由過原點(diǎn)與線段的中點(diǎn)的直線的斜率為,進(jìn)而可推導(dǎo)出的值.【詳解】聯(lián)立橢圓方程與直線方程,可得,整理得,設(shè),則,從而線段的中點(diǎn)的橫坐標(biāo)為,縱坐標(biāo),因?yàn)檫^原點(diǎn)與線段中點(diǎn)的直線的斜率為,所以,所以,故選D.【點(diǎn)睛】該題是一道關(guān)于直線與橢圓的綜合性題目,涉及到的知識(shí)點(diǎn)有直線與橢圓相交時(shí)對(duì)應(yīng)的解題策略,中點(diǎn)坐標(biāo)公式,斜率坐標(biāo)公式,屬于簡單題目.8、A【解析】建立空間直角坐標(biāo)系,用空間向量求解異面直線夾角的余弦值.【詳解】如圖,以D為坐標(biāo)原點(diǎn),DA所在直線為x軸,DC所在直線為y軸,所在直線為z軸建立空間直角坐標(biāo)系,設(shè)正方體棱長為2,則,,,,則,,設(shè)異面直線與所成角為(),則.故選:A9、B【解析】設(shè)圓柱的底面半徑為,則圓柱底,圓柱側(cè),則可得,則圓柱的體積為,利用導(dǎo)數(shù)求出最大值,確定值.【詳解】設(shè)圓柱的底面半徑為,則圓柱底,圓柱側(cè),∴,∴,則圓柱的體積,∴,由得,由得,∴當(dāng)時(shí),取極大值,也是最大值,即故選:B【點(diǎn)睛】本題主要考查了圓柱表面積和體積的計(jì)算,考查了導(dǎo)數(shù)的實(shí)際應(yīng)用,考查了學(xué)生的應(yīng)用意識(shí).10、C【解析】由可得,或,再由方程判斷所表示的曲線.【詳解】由可得,或,即或,則該方程表示一個(gè)橢圓的一部分和一條直線.故選:C11、D【解析】設(shè)等比數(shù)列的公比為,由已知列式求得,再由等比數(shù)列的通項(xiàng)公式與前項(xiàng)和求解.【詳解】設(shè)等比數(shù)列的公比為,由,得,所以,又,所以,所以,,所以即故選:D12、C【解析】依據(jù)橢圓和雙曲線定義和題給條件列方程組,得到關(guān)于橢圓的離心率和雙曲線的離心率的關(guān)系式,即可求得的值.【詳解】設(shè)橢圓的長軸長為,雙曲線的實(shí)軸長為,令,不妨設(shè)則,解之得代入,可得整理得,即,也就是故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】作出該不等式表示的平面區(qū)域,由的幾何意義結(jié)合距離公式得出答案.【詳解】該不等式組表示的平面區(qū)域,如下圖所示過點(diǎn)作直線的垂線,垂足為因?yàn)楸硎驹c(diǎn)與可行域中點(diǎn)之間的距離,所以的最小值為.故答案為:14、①②.【解析】由題設(shè)可得,應(yīng)用累加法求的通項(xiàng)公式,由基本不等式及確定的最小值,再應(yīng)用裂項(xiàng)求和法求的前20和.【詳解】由題設(shè),,∴,…,,又,∴將上式累加可得:,則,∴,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,又,故最小,則或5,當(dāng)時(shí),;當(dāng)時(shí),;∴的最小值為.由上知:,∴前20項(xiàng)和為.故答案為:8,.15、4【解析】設(shè)平面,在平面內(nèi)作于點(diǎn)O,在平面內(nèi)過點(diǎn)O作,設(shè)OM是的角平分線,過棱m上一點(diǎn)P作,則過點(diǎn)O在平面OMQP上存在2條直線l,使得直線l與OB、OA成,直線l與平面且與平面,所成的角都是30°,在的補(bǔ)角一側(cè)也存在2條滿足條件的直線l,由此可得答案.【詳解】解:設(shè)平面,在平面內(nèi)作于點(diǎn)O,在平面內(nèi)過點(diǎn)O作,因?yàn)槠矫?,所以,設(shè)OM是的角平分線,則,過棱m上一點(diǎn)P作,則過點(diǎn)O在平面OMQP上存在2條直線l,使得直線l與OB、OA成,此時(shí)直線l與平面且與平面,所成的角都是30°,同理,在的補(bǔ)角一側(cè)也存在2條滿足條件的直線l,所以這樣的直線l有4條,故答案為:4.16、【解析】根據(jù)求解即可.【詳解】,故答案為:【點(diǎn)睛】本題主要考查了求空間中兩個(gè)向量的夾角,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)解一元二次不等式,即可求得當(dāng)為真命題時(shí)的取值范圍;(2)先求得命題為真命題時(shí)的取值范圍.由為假命題,為真命題可知,兩命題一真一假.分類討論,即可求得的取值范圍.【詳解】(1)當(dāng)為真命題時(shí),解不等式可得;(2)當(dāng)為真命題時(shí),由,可得,∵為假命題,為真命題,∴,兩命題一真一假,∴或,解得或,∴m的取值范圍是.【點(diǎn)睛】本題考查了根據(jù)命題真假求參數(shù)的取值范圍,由復(fù)合命題真假判斷命題真假,并求參數(shù)的取值范圍,屬于基礎(chǔ)題.18、(1)函數(shù)f(x)在區(qū)間(0,+)上單調(diào)遞減(2)①;②證明見解析【解析】(1)求導(dǎo),求解可得導(dǎo)函數(shù)恒小于等于0,即得證;(2)①分析函數(shù)的單調(diào)性,由有兩個(gè)實(shí)數(shù)根可求解;②由(1)得2lnxx?,再利用其放縮可得,由此有,問題得證.【小問1詳解】當(dāng)a=1時(shí),函數(shù)因?yàn)樗院瘮?shù)f(x)在區(qū)間(0,+)上單調(diào)遞減;【小問2詳解】(i)由已知可得方程有兩個(gè)實(shí)數(shù)根記,則.當(dāng)時(shí),,函數(shù)k(x)是增函數(shù);當(dāng)時(shí),,函數(shù)k(x)是減函數(shù),所以,故(ii)易知,當(dāng)x1時(shí),,故.由(1)可知,當(dāng)0x1時(shí),,所以2lnxx?由,得,所以因?yàn)?,所?9、(1);(2)證明見解析,(-5,0).【解析】(1)寫出A、B、F的坐標(biāo),求出向量坐標(biāo),根據(jù)向量的關(guān)系即可列出方程組,求得a、b、c和橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線l的方程為y=kx+m,,.聯(lián)立直線l與橢圓方程,根據(jù)韋達(dá)定理得到根與系數(shù)的關(guān)系,求出,根據(jù)即可求得k和m的關(guān)系,即可證明直線過定點(diǎn)并求出該定點(diǎn).【小問1詳解】由題意,知A(-a,0),B(a,0),F(xiàn)(c,0)∵,∴解得從而b2=a2-c2=3∴橢圓C的方程;【小問2詳解】設(shè)直線l的方程為y=kx+m,,∵直線l不過點(diǎn)A,因此-2k+m≠0由得時(shí),,,∴由,可得3k=m-2k,即m=5k,故l的方程為y=kx+5k,恒過定點(diǎn)(-5,0).20、(1)見解析;(2).【解析】分析:依題意可知兩兩垂直,以點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系,(1)利用直線的方向向量和平面的法向量垂直,即可證得線面平面;(2)求出兩個(gè)平面的法向量,利用兩個(gè)向量的夾角公式,即可求解二面角的余弦值.詳解:依條件可知、、兩兩垂直,如圖,以點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系.根據(jù)條件容易求出如下各點(diǎn)坐標(biāo):,,,,,,,.(Ⅰ)證明:∵,,是平面的一個(gè)法向量,且,所以.又∵平面,∴平面;(Ⅱ)設(shè)是平面的法向量,因?yàn)?,,由,?解得平面的一個(gè)法向量,由已知,平面的一個(gè)法向量為,,∴二面角的余弦值是.點(diǎn)睛:本題考查了立體幾何中的面面垂直的判定和二面角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過嚴(yán)密推理,明確角的構(gòu)成.同時(shí)對(duì)于立體幾何中角的計(jì)算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.21、(1)或(2)【解析】(1)利用等差數(shù)列通項(xiàng)公式,可構(gòu)造方程組求得,由此可得通項(xiàng)公式;(2)由(1)可得,利用分組求和法,結(jié)合等差等比求和公式可得結(jié)果.【小問1詳解】設(shè)等差數(shù)列的公

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論