




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省深圳市福田區(qū)耀華實驗學(xué)校國際班2023年高二數(shù)學(xué)第一學(xué)期期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.是雙曲線:上一點,已知,則的值()A. B.C.或 D.2.在中,三個內(nèi)角A,B,C的對邊分別為a,b,c,若,,,則的面積為()A. B.1C. D.23.將的展開式按x的降冪排列,第二項不大于第三項,若,且,則實數(shù)x的取值范圍是()A. B.C. D.4.雙曲線:(,)的左、右焦點分別為、,點在雙曲線上,,,則的離心率為()A. B.2C. D.5.已知向量,,且與互相平行,則的值為()A.-2 B.C. D.6.對于兩個平面、,“內(nèi)有三個點到的距離相等”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.橢圓的長軸長是()A.3 B.4C.6 D.88.若復(fù)數(shù),則()A B.C. D.9.等差數(shù)列的前項和為,若,,則()A.12 B.18C.21 D.2710.已知直線經(jīng)過點,且是的方向向量,則點到的距離為()A. B.C. D.11.已知空間向量,,,下列命題中正確的個數(shù)是()①若與共線,與共線,則與共線;②若,,非零且共面,則它們所在的直線共面;⑧若,,不共面,那么對任意一個空間向量,存在唯一有序?qū)崝?shù)組,使得;④若,不共線,向量,則可以構(gòu)成空間的一個基底.A.0 B.1C.2 D.312.在單調(diào)遞減的等比數(shù)列中,若,,則()A.9 B.3C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在四棱錐中,平面,底面是菱形,且,則異面直線與所成的角的余弦值為______,點到平面的距離等于______.14.如圖,在長方體中,,,則直線與平面所成角的正弦值為__________.15.?dāng)?shù)列的前項和為,則該數(shù)列的通項公式___________16.一條光線經(jīng)過點射到直線上,被反射后經(jīng)過點,則入射光線所在直線的方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,點在橢圓上.(1)求橢圓的方程;(2)過點作軸的平行線交軸于點,過點的直線與橢圓交于兩個不同的點、,直線、與軸分別交于、兩點,若,求直線的方程;(3)在第(2)問條件下,點是橢圓上的一個動點,請問:當(dāng)點與點關(guān)于軸對稱時的面積是否達到最大?并說明理由.18.(12分)如圖,在平面直角標(biāo)系中,已知n個圓與x軸和線均相切,且任意相鄰的兩個圓外切,其中圓.(1)求數(shù)列通項公式;(2)記n個圓的面積之和為S,求證:.19.(12分)在中,內(nèi)角A,B,C對應(yīng)的邊分別為a,b,c,已知.(1)求B;(2)若,,求b的值.20.(12分)已知動圓過點,且與直線:相切(1)求動圓圓心的軌跡方程;(2)若過點且斜率的直線與圓心的軌跡交于兩點,求線段的長度21.(12分)已知橢圓C:的離心率為,,是橢圓的左、右焦點,過且垂直于x軸的直線被橢圓C截得的線段長為1(1)求橢圓C的方程;(2)過點的直線l與橢圓C交于A,B兩點,求(O為坐標(biāo)原點)的面積的最大值22.(10分)已知橢圓的離心率為,且過點.(1)求橢圓的方程;(2)四邊形的頂點在橢圓上,且對角線,均過坐標(biāo)原點,若,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)雙曲線定義,結(jié)合雙曲線上的點到焦點的距離的取值范圍,即可求解.【詳解】雙曲線方程為:,是雙曲線:上一點,,,或,又,.故選:B2、C【解析】由余弦定理求出,利用正弦定理將邊化角,再根據(jù)二倍角公式得到,即可得到,最后利用面積公式計算可得;【詳解】解:因為,又,所以,因為,所以,所以,因為,所以,即,所以或,即或(舍去),所以,因為,所以,所以;故選:C3、A【解析】按照二項展開式展開表示出第二項第三項,解不等式即可.【詳解】由二項展開式,第二項為:,第三項為:,依題意,兩邊約去得到,即,由知,則,同時約去得到.故選:A.4、C【解析】根據(jù)雙曲線定義、余弦定理,結(jié)合題意,求得關(guān)系,即可求得離心率.【詳解】根據(jù)題意,作圖如下:不妨設(shè),則,,①;在△中,由余弦定理可得:,代值得:,②;聯(lián)立①②兩式可得:;在△和△中,由,可得:,整理得:,③;聯(lián)立②③可得:,又,故可得:,則,則,故離心率為.故選:C.5、A【解析】應(yīng)用空間向量坐標(biāo)的線性運算求、的坐標(biāo),根據(jù)空間向量平行有,即可求的值.【詳解】由題設(shè),,,∵與互相平行,∴且,則,可得.故選:A6、B【解析】根據(jù)平面的性質(zhì)分別判斷充分性和必要性.【詳解】充分性:若內(nèi)有三個點到的距離相等,當(dāng)這三個點不在一條直線上時,可得;當(dāng)這三個點在一條直線上時,則、平行或相交,故充分性不成立;必要性:若,則內(nèi)每個點到的距離相等,故必要性成立,所以“內(nèi)有三個點到的距離相等”是“”的必要不充分條件.故選:B.7、D【解析】根據(jù)橢圓方程可得到a,從而求得長軸長.【詳解】橢圓方程為,故,所以橢圓長軸長為,故選:D.8、A【解析】根據(jù)復(fù)數(shù)的乘法運算即可求解.【詳解】由,故選:A9、B【解析】根據(jù)等差數(shù)列的前項和為具有的性質(zhì),即成等差數(shù)列,由此列出等式,求得答案.【詳解】因為為等差數(shù)列的前n項和,且,,所以成等差數(shù)列,所以,即,解得=18,故選:B.10、B【解析】求出,根據(jù)點到直線的距離的向量公式進行求解.【詳解】因為,為的一個方向向量,所以點到直線的距離.故選:B11、B【解析】用向量共線或共面的基本定理即可判斷.【詳解】若與,與共線,,則不能判定,故①錯誤;若非零向量共面,則向量可以在一個與組成的平面平行的平面上,故②錯誤;不共面,意味著它們都是非零向量,可以作為一組基底,故③正確;,∴與共面,故不能組成一個基底,故④錯誤;故選:C.12、A【解析】利用等比數(shù)列的通項公式可得,結(jié)合條件即求.【詳解】設(shè)等比數(shù)列的公比為,則由,,得,解得或,又單調(diào)遞減,故,.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】因為底面是菱形,可得,則異面直線與所成的角和與所成的角相等,即可求得異面直線與所成的角的余弦值.在底面從點向作垂線,求證垂直平面,即可求得答案.【詳解】根據(jù)題意畫出其立體圖形:如圖底面是菱形,則異面直線與所成的角和直線與所成的角相等平面,平面又,底面是菱形即故:異面直線與所成的角的余弦值為:在底面從點向作垂線平面,平面,平面故是到平面的距離故答案為:,.【點睛】本題考查了求異面直線的夾角和點到面距離,解題關(guān)鍵是掌握將求異面直線夾角轉(zhuǎn)化為共面直線夾角的解法,考查了分析能力和推理能力,屬于基礎(chǔ)題.14、##【解析】過作,垂足為,則平面,則即為所求角,從而可得結(jié)果.【詳解】依題意,畫出圖形,如圖,過作,垂足為,可知點H為中點,由平面,可得,又所以平面,則即為所求角,因為,,所以,故答案為:.15、【解析】根據(jù)與關(guān)系求解即可.【詳解】當(dāng)時,,當(dāng)時,,檢驗:,所以.故答案為:16、【解析】先求點關(guān)于直線的對稱點,連接,則直線即為所求.【詳解】設(shè)點關(guān)于直線的對稱點為,則,解得,所以,又點,所以,直線的方程為:,由圖可知,直線即為入射光線,所以化簡得入射光線所在直線的方程:.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)當(dāng)點與點關(guān)于軸對稱時,的面積達到最大,理由見解析.【解析】(1)設(shè),可得出,,將點的坐標(biāo)代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)分析可知直線的斜率存在,設(shè)直線的方程為,設(shè)點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,由已知可得,結(jié)合韋達定理可求得的值,即可得出直線的方程;(3)設(shè)與直線平行且與橢圓相切的直線的方程為,將該直線方程與橢圓的方程聯(lián)立,由判別式為零可求得,分析可知當(dāng)點為直線與橢圓的切點時,的面積達到最大,求出直線與橢圓的切點坐標(biāo),可得出結(jié)論.【小問1詳解】解:因為,設(shè),則,,所以,橢圓的方程可表示為,將點的坐標(biāo)代入橢圓的方程可得,解得,因此,橢圓的方程為.【小問2詳解】解:設(shè)線段的中點為,因為,則軸,故直線、的傾斜角互補,易知點,若直線軸,則、為橢圓短軸的兩個頂點,不妨設(shè)點、,則,,,不合乎題意.所以,直線的斜率存在,設(shè)直線的方程為,設(shè)點、,聯(lián)立,可得,,由韋達定理可得,,,,則,所以,解得,因此,直線的方程為.【小問3詳解】解:設(shè)與直線平行且與橢圓相切的直線的方程為,聯(lián)立,可得(*),,解得,由題意可知,當(dāng)點為直線與橢圓的切點時,此時的面積取最大值,當(dāng)時,方程(*)為,解得,此時,即點.此時,點與點關(guān)于軸對稱,因此,當(dāng)點與點關(guān)于軸對稱時,的面積達到最大.【點睛】方法點睛:圓錐曲線中的最值問題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來求最值;二是代數(shù)法,常將圓錐曲線的最值問題轉(zhuǎn)化為二次函數(shù)或三角函數(shù)的最值問題,然后利用基本不等式、函數(shù)的單調(diào)性或三角函數(shù)的有界性等求最值18、(1).(2)證明見解析.【解析】(1)由已知得,設(shè)圓分別切軸于點,過點作,垂足為.在從而有得,由等比數(shù)列的定義得數(shù)列是以為首項,為公比的等比數(shù)列.由此求得答案;(2)由(1)得再由圓的面積公式和等比數(shù)列求和公式計算可得證.【小問1詳解】解:直線的傾斜角為則圓心在直線上,,設(shè)圓分別切軸于點,過點作,垂足為.在中,所以即化簡得,變形得,所以是以為首項,為公比的等比數(shù)列.,.【小問2詳解】解:由(1)得所以,所以.19、(1);(2).【解析】(1)利用正弦定理,將邊化角轉(zhuǎn)化,即可求得;(2)利用余弦定理,結(jié)合(1)中所求,即可求得.【小問1詳解】在中,由正弦定理得,因為,所以,所以,又因為,所以.【小問2詳解】在中,由余弦定理得,代入數(shù)據(jù)解得,所以20、(1);(2).【解析】(1)由題意分析圓心符合拋物線定義,然后求軌跡方程;(2)直接聯(lián)立方程組,求出弦長.【詳解】解:(1)圓過點,且與直線相切點到直線的距離等于由拋物線定義可知點的軌跡是以為焦點、以為準(zhǔn)線的拋物線,依題意,設(shè)點的軌跡方程為,則,解得,所以,動圓圓心的軌跡方程是(2)依題意可知直線,設(shè)聯(lián)立,得,則,所以,線段的長度為【點睛】(1)待定系數(shù)法、代入法可以求二次曲線的標(biāo)準(zhǔn)方程;(2)“設(shè)而不求”是一種在解析幾何中常見的解題方法,可以解決直線與二次曲線相交的問題.21、(1);(2)1.【解析】(1)根據(jù)給定條件結(jié)合列式計算得解.(2)設(shè)出直線l的方程,與橢圓C的方程聯(lián)立,借助韋達定理結(jié)合均值不等式計算作答.【小問1詳解】橢圓C的半焦距為c,離心率,因過且垂直于x軸的直線被橢圓C截得的弦長為1,將代入橢圓C方程得:,即,則有,解得,所以橢圓C的方程為.【小問2詳解】由(1)知,,依題意,直線l的斜率不為0,則設(shè)直線l的方程為,,,由消去x并整理得:,,,的面積,,設(shè),,,,當(dāng)且僅當(dāng),時取得“=”,于是得,,所以面積的最大值為1.【點睛】思路點睛:解決直線與橢圓的綜合問題時,要注意:(1)注意觀察應(yīng)用題設(shè)中的每一個條件,明確確定直線、橢圓的條件
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)生會創(chuàng)業(yè)實踐部工作總結(jié)模版
- 人類命運共同體心得體會模版
- 學(xué)校落實“雙減”提質(zhì)減負(fù)促進全面發(fā)展經(jīng)驗總結(jié)模版
- 食管瘺的臨床護理
- 嬰兒尿布疹的臨床護理
- 有關(guān)消防法的試題及答案
- 永旺消防考試題目及答案
- 腫瘤免疫逃逸機制與干預(yù)策略
- 垂體腺瘤護理要點解析
- 輸電線路工程安全文明施工標(biāo)準(zhǔn)化實施方案
- 2024年全國工會財務(wù)知識大賽備賽試題庫500(含答案)
- 2025-2030中國貿(mào)易融資行業(yè)市場發(fā)展現(xiàn)狀及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 2024年自治區(qū)文化和旅游廳所屬事業(yè)單位招聘工作人員考試真題
- 法院輔警筆試題及答案
- 雇保姆看孩子合同協(xié)議
- (四模)長春市2025屆高三質(zhì)量監(jiān)測(四)語文試卷(含答案詳解)
- 《小米營銷策略》課件
- 2024年江西省三支一扶考試真題
- 2025年小學(xué)語文教師實習(xí)工作總結(jié)模版
- 2024焊接工程師資格證書試題及答案指南
- 2025年咸陽職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性測試題庫(名師系列)
評論
0/150
提交評論