




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
廣西桂林市十八中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是拋物線的焦點,是拋物線的準(zhǔn)線,點,連接交拋物線于點,,則的面積為()A.4 B.9C. D.2.設(shè)是公比為的等比數(shù)列,則“”是“為遞增數(shù)列”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件3.函數(shù)的圖象大致為()A. B.C. D.4.已知是雙曲線的左、右焦點,點P在C上,,則等于()A.2 B.4C.6 D.85.在正方體中,為棱的中點,則異面直線與所成角的正切值為A. B.C. D.6.即空氣質(zhì)量指數(shù),越小,表明空氣質(zhì)量越好,當(dāng)不大于100時稱空氣質(zhì)量為“優(yōu)良”.如圖是某市3月1日到12日的統(tǒng)計數(shù)據(jù).則下列敘述正確的是A.這天的的中位數(shù)是B.天中超過天空氣質(zhì)量為“優(yōu)良”C.從3月4日到9日,空氣質(zhì)量越來越好D.這天的的平均值為7.方程有兩個不同的解,則實數(shù)k的取值范圍為()A. B.C. D.8.在等差數(shù)列中,若,則()A.5 B.6C.7 D.89.設(shè)等差數(shù)列前n項和是,若,則的通項公式可以是()A. B.C. D.10.若命題為“,”,則為()A., B.,C., D.,11.《九章算術(shù)》是我國古代的數(shù)學(xué)巨著,書中有如下問題:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次漸多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(大夫爵位最高,爵位依次從高變低)5個人共出100錢,按照爵位從高到低每人所出錢數(shù)成等差數(shù)列,問這5個人各出多少錢?”在這個問題中,若公士出28錢,則不更出的錢數(shù)為()A.14 B.20C.18 D.1612.命題“?x0∈(0,+∞),”的否定是()A.?x∈(﹣∞,0),2x+sinx≥0B.?x∈(0,+∞),2x+sinx≥0C.?x0∈(0,+∞),D.?x0∈(﹣∞,0),二、填空題:本題共4小題,每小題5分,共20分。13.如圖,某湖有一半徑為的半圓形岸邊,現(xiàn)決定在圓心O處設(shè)立一個水文監(jiān)測中心(大小忽略不計),在其正東方向相距的點A處安裝一套監(jiān)測設(shè)備.為了監(jiān)測數(shù)據(jù)更加準(zhǔn)確,在半圓弧上的點B以及湖中的點C處,再分別安裝一套監(jiān)測設(shè)備,且,.定義:四邊形及其內(nèi)部區(qū)域為“直接監(jiān)測覆蓋區(qū)域”,設(shè).則“直接監(jiān)測覆蓋區(qū)域”面積的最大值為________14.?dāng)?shù)列中,,則______15.設(shè)x,y滿足約束條件則的最大值為________16.如圖,在平行六面體中,設(shè),N是的中點,則向量_________.(用表示)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分){}是公差為1的等差數(shù)列,.正項數(shù)列{}的前n項和為,且.(1)求數(shù)列{}和數(shù)列}的通項公式;(2)在和之間插入1個數(shù),使,,成等差數(shù)列,在和之間插入2個數(shù),,使,,,成等差數(shù)列,…,在和之間插入n個數(shù),,…,,使,,,…,,成等差數(shù)列.①記,求{}的通項公式;②求的值.18.(12分)如圖,在直三棱柱中,,,,分別為,,的中點,點在棱上,且,,.(1)求證:平面;(2)求證:平面平面;(3)求平面與平面的距離.19.(12分)已知點F為拋物線的焦點,點在拋物線上,且.(1)求該拋物線的方程;(2)若點A在第一象限,且拋物線在點A處的切線交y軸于點M,求的面積.20.(12分)如圖所示等腰梯形ABCD中,,,,點E為CD的中點,沿AE將折起,使得點D到達(dá)F位置.(1)當(dāng)時,求證:平面AFC;(2)當(dāng)時,求二面角的余弦值.21.(12分)已知是邊長為2的正方形,正方形繞旋轉(zhuǎn)形成一個圓柱;(1)求該圓柱的表面積;(2)正方形繞順時針旋轉(zhuǎn)至,求異面直線與所成角的大小22.(10分)已知函數(shù),其中a為正數(shù)(1)討論單調(diào)性;(2)求證:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意求得拋物線的方程為和焦點為,由,得到為的中點,得到,代入拋物線方程,求得,進而求得的面積.【詳解】由直線是拋物線的準(zhǔn)線,可得,即,所以拋物線的方程為,其焦點為,因為,可得可得三點共線,且為的中點,又因為,,所以,將點代入拋物線,可得,所以的面積為.故選:D.2、D【解析】當(dāng)時,不是遞增數(shù)列;當(dāng)且時,是遞增數(shù)列,但是不成立,所以選D.考點:等比數(shù)列3、A【解析】由題意首先確定函數(shù)的奇偶性,然后考查函數(shù)在特殊點的函數(shù)值排除錯誤選項即可確定函數(shù)的圖象.【詳解】由函數(shù)的解析式可得:,則函數(shù)為奇函數(shù),其圖象關(guān)于坐標(biāo)原點對稱,選項CD錯誤;當(dāng)時,,選項B錯誤.故選:A.【點睛】函數(shù)圖象的識辨可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢.(3)從函數(shù)的奇偶性,判斷圖象的對稱性.(4)從函數(shù)的特征點,排除不合要求的圖象.利用上述方法排除、篩選選項4、D【解析】根據(jù)雙曲線定義寫出,兩邊平方代入焦點三角形的余弦定理中即可求解【詳解】雙曲線,,所以,根據(jù)雙曲線的對稱性,可假設(shè)在第一象限,設(shè),則,所以,,在中,根據(jù)余弦定理:,即,解得:,所以故選:D5、C【解析】利用正方體中,,將問題轉(zhuǎn)化為求共面直線與所成角的正切值,在中進行計算即可.【詳解】在正方體中,,所以異面直線與所成角為,設(shè)正方體邊長為,則由為棱的中點,可得,所以,則.故選C.【點睛】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個平面中;②利用邊角關(guān)系,找到(或構(gòu)造)所求角所在的三角形;③求出三邊或三邊比例關(guān)系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因為直線夾角為銳角,所以②對應(yīng)的余弦取絕對值即為直線所成角的余弦值.6、C【解析】這12天的AQI指數(shù)值的中位數(shù)是,故A不正確;這12天中,空氣質(zhì)量為“優(yōu)良”的有95,85,77,67,72,92共6天,故B不正確;;從4日到9日,空氣質(zhì)量越來越好,,故C正確;這12天的指數(shù)值的平均值為110,故D不正確.故選C7、C【解析】轉(zhuǎn)化為圓心在原點半徑為1的上半圓和表示恒過定點的直線始終有兩個公共點,結(jié)合圖形可得答案.【詳解】令,平方得表示圓心在原點半徑為1的上半圓,表示恒過定點的直線,方程有兩個不同的解即半圓和直線要始終有兩個公共點,如圖圓心到直線的距離為,解得,當(dāng)直線經(jīng)過時由得,當(dāng)直線經(jīng)過時由得,所以實數(shù)k的取值范圍為.故選:C.8、B【解析】由得出.【詳解】由可得,故選:B9、D【解析】根據(jù)題意可得公差的范圍,再逐一分析各個選項即可得出答案.【詳解】解:設(shè)等差數(shù)列的公差為,由,得,所以,故AB錯誤;若,則,與題意矛盾,故C錯誤;若,則,符合題意.故選:D.10、B【解析】特稱命題的否定是全稱命題,把存在改為任意,把結(jié)論否定.【詳解】“,”的否命題為“,”,故選:B11、D【解析】根據(jù)題意,建立等差數(shù)列模型,結(jié)合等差數(shù)列公式求解即可.【詳解】解:根據(jù)題意,設(shè)每人所出錢數(shù)成等差數(shù)列,公差為,前項和為,則由題可得,解得,所以不更出的錢數(shù)為.故選:D.12、B【解析】利用特稱命題的否定是全稱命題,寫出結(jié)果即可【詳解】命題“?x0∈(0,+∞),”的否定是“?x∈(0,+∞),2x+sinx≥0”故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意,根據(jù)余弦定理得的值,則四邊形的面積表示為,再代入面積公式化簡為三角函數(shù),根據(jù)三角函數(shù)的性質(zhì)求解最大值即可.【詳解】在中,,,,,,則(其中),當(dāng)時,取最大值,所以“直接監(jiān)測覆蓋區(qū)域”面積的最大值.故答案為:.【點睛】解答本題的關(guān)鍵是將四邊形的面積表示為,代入面積公式后化簡得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì)求解最大值.14、1【解析】根據(jù)可得,則,所以可得數(shù)列是以6為周期周期數(shù)列,再由計算出的值,再利用對數(shù)的運算性質(zhì)可求得結(jié)果【詳解】因為,所以,所以,所以數(shù)列是以6為周期的周期數(shù)列,因為,,所以,所以,所以所以,故答案為:115、1【解析】先作出可行域,由,得,作出直線,向下平移過點時,取得最大值,求出點坐標(biāo)代入目標(biāo)函數(shù)中可得答案【詳解】作出可行域如圖(圖中陰影部分),由,得,作出直線,向下平移過點時,取得最大值,由,得,即,所以的最大值為,故答案為:116、【解析】根據(jù)向量的加減法運算法則及數(shù)乘運算求解即可.【詳解】由向量的減法及加法運算可得,,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)①;②【解析】(1)利用等差數(shù)列的通項公式將展開化簡,求得首項,可得;根據(jù)遞推式,確定,再寫出,兩式相減可求得;(2)①根據(jù)等差數(shù)列的性質(zhì),采用倒序相加法求得結(jié)果;②根據(jù)數(shù)列的通項的特征,采用錯位相減法求和即可.【小問1詳解】設(shè)數(shù)列{}的公差為d,則d=1,由,即,可得,所以{}的通項公式為;由可知:當(dāng),得,當(dāng)時,,兩式相減得;,即,所以{}是以為首項,為公比的等比數(shù)列,故.【小問2詳解】①,兩式相加,得所以;②,,兩式相減得:,故.18、(1)見解析(2)見解析(3)【解析】(1)利用勾股定理證得,證明平面,根據(jù)線面垂直的性質(zhì)證得,再根據(jù)線面垂直的判定定理即可得證;(2)取的中點,連接,可得為的中點,證明,四邊形是平行四邊形,可得,再根據(jù)面面平行的判定定理即可得證;(3)設(shè),由(1)(2)可得即為平面與平面的距離,求出的長度,即可得解.【小問1詳解】證明:在直三棱柱中,為的中點,,,故,因為,所以,又平面,平面,所以,又因,,所以平面,又平面,所以,又,所以平面;【小問2詳解】證明:取的中點,連接,則為的中點,因為,,分別為,,的中點,所以,且,所以四邊形是平行四邊形,所以,所以,又平面,平面,所以平面,因為,所以,又平面,平面,所以平面,又因,平面,平面,所以平面平面;【小問3詳解】設(shè),因為平面,平面平面,所以平面,所以即為平面與平面的距離,因平面,所以,,所以,即平面與平面的距離為.19、(1);(2)10.【解析】(1)由根據(jù)拋物線的定義求出可得拋物線方程;(2)求出拋物線過點A的切線,得出點M的坐標(biāo)即可求三角形面積.【小問1詳解】由拋物線的定義可知,即,拋物線的方程為.【小問2詳解】,且A在第一象限,,即A(4,4),顯然切線的斜率存在,故可設(shè)其方程為,由,消去得,即,令,解得,切線方程為.令x=0,得,即,又,,.20、(1)證明見解析(2)【解析】(1)結(jié)合線面垂直的判定定理來證得結(jié)論成立.(2)建立空間直角坐標(biāo)系,利用向量法來求得二面角的大小.【小問1詳解】設(shè),由于四邊形是等腰梯形,是的中點,,所以,所以四邊形是平行四邊形,由于,所以四邊形是菱形,所以,由于,是的中點,所以,由于,所以平面.【小問2詳解】由于,所以三角形、三角形、三角形是等邊三角形,設(shè)是的中點,設(shè),則,所以,所以,由于兩兩垂直.以為空間坐標(biāo)原點建立如圖所示空間直角坐標(biāo)系,,,平面的法向量為,設(shè)平面法向量為,則,故可設(shè),由圖可知,二面角為鈍角,設(shè)二面角為,,則.21、(1)(2)【解析】(1)利用表面積公式直接計算得到答案.(2)連接和,,故即為異面直線與所成角,證明,根據(jù)長度關(guān)系得到答案.【小問1詳解】【小問2詳解】如圖所示:連接和,,故即為異面直線與所成角,,,,故平面,平面,故,,故,直角中,,,,故異面直線與所成角的大小為.22、(1)答案見解析(2)證明見解析【解析】(1)求解函數(shù)的導(dǎo)函數(shù),并且求的兩個根,然后分類討論,和三種情況下對應(yīng)的單調(diào)性;(2)令,通過二次求導(dǎo)法,判斷函數(shù)的單調(diào)性與最小值,設(shè)的零點為,求出取值范圍,最后將轉(zhuǎn)化為的對勾函數(shù)并求解最小值,即可證明出不等式.【小問1詳解】函數(shù)的定義域為∵令得∵,∴,得或①當(dāng),即時,時,或;時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 筆譯服務(wù)合同(翻譯中心)-服務(wù)合同7篇
- 2025年龍巖貨運資格證考試真題
- 學(xué)校燈光改造工程合同
- 勞務(wù)派遣合同模本
- 工程分包合同總公司與分公司
- 英語基礎(chǔ)題試卷小學(xué)
- 小學(xué)課外英語試卷
- 配電控制設(shè)備市場分析及競爭策略分析報告
- 簡單的競標(biāo)合同范本
- 分包木工材料合同范本
- 公對公打款合同
- 抗生素種類歸納分類
- 01-BUFR格式應(yīng)用指南(試用版)
- 體育測量與評價04心肺功能的測量與評價
- 提高意識風(fēng)險防范化解能力體會發(fā)言
- 2023年度危險作業(yè)安全監(jiān)護手冊
- 馬克思主義哲學(xué)十講
- 催化材料智慧樹知到答案章節(jié)測試2023年南開大學(xué)
- 中國故事英文版哪吒英文二篇
- GB/T 9846.1-2004膠合板第1部分:分類
- GB/T 32685-2016工業(yè)用精對苯二甲酸(PTA)
評論
0/150
提交評論