




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省安陽一中2024屆高二上數(shù)學(xué)期末調(diào)研模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),,若對于任意的,存在唯一的,使得,則實數(shù)a的取值范圍是()A(e,4) B.(e,4]C.(e,4) D.(,4]2.設(shè),則A.2 B.3C.4 D.53.如圖①所示,將一邊長為1的正方形沿對角線折起,形成三棱錐,其主視圖與俯視圖如圖②所示,則左視圖的面積為()A. B.C. D.4.命題“?x∈R,|x|+x2≥0”的否定是()A.?x∈R,|x|+x2<0 B.?x∈R,|x|+x2≤0C.?x0∈R,|x0|+<0 D.?x0∈R,|x0|+≥05.設(shè)正數(shù)數(shù)列的前項和為,數(shù)列的前項積為,且,則()A. B.C. D.6.在長方體中,若,,則異而直線與所成角的余弦值為()A. B.C. D.7.已知點分別為圓與圓的任意一點,則的取值范圍是()A. B.C. D.8.已知、,則直線的傾斜角為()A. B.C. D.9.在某次海軍演習(xí)中,已知甲驅(qū)逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護衛(wèi)艦在甲驅(qū)逐艦的正西方向,若測得乙護衛(wèi)艦在航母的南偏西45°方向,則甲驅(qū)逐艦與乙護衛(wèi)艦的距離為()A.海里 B.海里C.海里 D.海里10.已知圓的方程為,則圓心的坐標(biāo)為()A. B.C. D.11.已知直線過點,,則直線的方程為()A. B.C. D.12.接種疫苗是預(yù)防控制新冠疫情最有效的方法,我國自2021年1月9日起實施全民免費接種新冠疫苗并持續(xù)加快推進接種工作.某地為方便居民接種,共設(shè)置了A、B、C三個新冠疫苗接種點,每位接種者可去任一個接種點接種.若甲、乙兩人去接種新冠疫苗,則兩人不在同一接種點接種疫苗的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在長方體中,M、N分別是BC、的中點,若,則______14.一條光線經(jīng)過點射到直線上,被反射后經(jīng)過點,則入射光線所在直線的方程為___________.15.已知幾何體如圖所示,其中四邊形ABCD,CDGF,ADGE均為正方形,且邊長為1,點M在DG上,若直線MB與平面BEF所成的角為45°,則___________.16.在數(shù)列中,,,記是數(shù)列的前項和,則=___.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)命題:函數(shù)有意義;命題:實數(shù)滿足.(1)當(dāng)且為真時,求實數(shù)的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍.18.(12分)點與定點的距離和它到直線:的距離的比是常數(shù).(1)求動點的軌跡的方程;(2)點在(1)中軌跡上運動軸,為垂足,點滿足,求點軌跡方程.19.(12分)已知點F為拋物線的焦點,點在拋物線上,且.(1)求該拋物線的方程;(2)若點A在第一象限,且拋物線在點A處的切線交y軸于點M,求的面積.20.(12分)某雙曲線型自然冷卻通風(fēng)塔的外形是由圖1中的雙曲線的一部分繞其虛軸所在的直線旋轉(zhuǎn)一周所形成的曲面,如圖2所示.雙曲線的左、右頂點分別為、.已知該冷卻通風(fēng)塔的最窄處是圓O,其半徑為1;上口為圓,其半徑為;下口為圓,其半徑為;高(即圓與所在平面間的距離)為.(1)求此雙曲線的方程;(2)以原平面直角坐標(biāo)系的基礎(chǔ)上,保持原點和x軸、y軸不變,建立空間直角坐標(biāo)系,如圖3所示.在上口圓上任取一點,在下口圓上任取一點.請給出、的值,并求出與的值;(3)在(2)的條件下,是否存在點P、Q,使得P、A、Q三點共線.若不存在,請說明理由;若存在,求出點P、Q的坐標(biāo),并證明此時線段PQ上任意一點都在曲面上.21.(12分)已知函數(shù),其中a為正數(shù)(1)討論單調(diào)性;(2)求證:22.(10分)如圖,在四棱錐中,側(cè)面底面,是以為斜邊的等腰直角三角形,,,,點E為的中點.(1)證明:平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】結(jié)合導(dǎo)數(shù)和二次函數(shù)的性質(zhì)可求出和的值域,結(jié)合已知條件可得,,從而可求出實數(shù)a的取值范圍.【詳解】解:g(x)=x2ex的導(dǎo)函數(shù)為g′(x)=2xex+x2ex=x(x+2)ex,當(dāng)時,,由時,,時,,可得g(x)在[–1,0]上單調(diào)遞減,在(0,1]上單調(diào)遞增,故g(x)在[–1,1]上的最小值為g(0)=0,最大值為g(1)=e,所以對于任意的,.因為開口向下,對稱軸為軸,又,所以當(dāng)時,,當(dāng)時,,則函數(shù)在[,2]上的值域為[a–4,a],且函數(shù)f(x)在,圖象關(guān)于軸對稱,在(,2]上,函數(shù)單調(diào)遞減.由題意,得,,可得a–4≤0<e<,解得ea≤4故選:B【點睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的最值,考查了二次函數(shù)的性質(zhì),屬于中檔題.本題的難點是這一條件的轉(zhuǎn)化.2、B【解析】利用復(fù)數(shù)的除法運算求出,進而可得到.【詳解】,則,故,選B.【點睛】本題考查了復(fù)數(shù)的四則運算,考查了復(fù)數(shù)的模,屬于基礎(chǔ)題3、A【解析】由視圖確定該幾何體的特征,即可得解.【詳解】由主視圖可以看出,A點在面上的投影為的中點,由俯視圖可以看出C點在面上的投影為的中點,所以其左視圖為如圖所示的等腰直角三角形,直角邊長為,于是左視圖的面積為故選:A.4、C【解析】利用全稱命題的否定可得出結(jié)論.【詳解】由全稱命題的否定可知,命題“,”的否定是“,”.故選:C.5、B【解析】當(dāng)可求得;當(dāng)時,可證得數(shù)列為等差數(shù)列,利用等差數(shù)列通項公式可推導(dǎo)得到,由求得后,利用可求得結(jié)果.【詳解】當(dāng)時,,解得:;當(dāng)時,由得:,即,,數(shù)列是以為首項,為公差的等差數(shù)列,,解得:,,經(jīng)檢驗:滿足,,故選:B.6、C【解析】通過平移把異面直線平移到同一平面中,所以取,的中點,易知且過中心點,所以異而直線與所成角為和所成角,通過解三角形即可得解.【詳解】根據(jù)長方體的對稱性可得體對角線過中心點,取,的中點,易知且過中心點,所以異而直線和所成角為和所成角,連接,在中,,,,所以則異而直線與所成角的余弦值為:,故選:C.7、B【解析】先判定兩圓的位置關(guān)系為相離的關(guān)系,然后利用幾何方法得到的取值范圍.【詳解】的圓心為,半徑,的圓心為,半徑,圓心距,∴兩圓相離,∴,故選:B.8、B【解析】設(shè)直線的傾斜角為,利用直線的斜率公式求出直線的斜率,進而可得出直線的傾斜角.【詳解】設(shè)直線的傾斜角為,由斜率公式可得,,因此,.故選:B.9、A【解析】利用正弦定理可求解.【詳解】設(shè)甲驅(qū)逐艦、乙護衛(wèi)艦、航母所在位置分別為A,B,C,則,,.在△ABC中,由正弦定理得,即,解得,即甲驅(qū)逐艦與乙護衛(wèi)艦的距離為海里故選:A10、A【解析】將圓的方程配成標(biāo)準(zhǔn)方程,可求得圓心坐標(biāo).【詳解】圓的標(biāo)準(zhǔn)方程為,圓心的坐標(biāo)為.故選:A.11、C【解析】根據(jù)兩點的坐標(biāo)和直線的兩點式方程計算化簡即可.【詳解】由直線的兩點式方程可得,直線l的方程為,即故選:C12、C【解析】利用古典概型的概率公式可求出結(jié)果【詳解】由題知,基本事件總數(shù)為甲、乙兩人不在同一接種點接種疫苗的基本事件數(shù)為由古典概型概率計算公式可得所求概率故選:二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】作出圖像,根據(jù)幾何關(guān)系,結(jié)合空間向量的加減法運算法則即可求解.【詳解】,∴,,,故答案為:-2.14、【解析】先求點關(guān)于直線的對稱點,連接,則直線即為所求.【詳解】設(shè)點關(guān)于直線的對稱點為,則,解得,所以,又點,所以,直線的方程為:,由圖可知,直線即為入射光線,所以化簡得入射光線所在直線的方程:.故答案為:.15、##【解析】把該幾何體補成一個正方體,如圖,利用正方體的性質(zhì)證明面面垂直得出直線MB與平面BEF所成的角,然后計算可得【詳解】把該幾何體補成一個正方體,如圖,,連接,由平面,平面,得,同理,又正方形中,,,平面,所以平面,而平面,所以平面平面,所以平面內(nèi)的直線在平面上的射影是,即是直線MB與平面BEF所成的角,,,,故答案為:16、930【解析】當(dāng)為偶數(shù)時,,所以數(shù)列前60項中偶數(shù)項的和,當(dāng)為奇數(shù)時,,因此數(shù)列是以1為首項,公差為2等差數(shù)列,前60項中奇數(shù)項的和為,所以.考點:遞推數(shù)列、等差數(shù)列.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)首先將命題,化簡,然后由為真可得,均為真,取交集即可求出實數(shù)的取值范圍;(2)將是的充分不必要條件轉(zhuǎn)化為是的必要不充分條件,進而將問題轉(zhuǎn)化為,從而求出實數(shù)的取值范圍【詳解】(1)若命題為真,則,解得,當(dāng)時,命題,若命題為真,則,解得,所以,因為為真,所以,均為真,所以,所以,所以實數(shù)的取值范圍為(2)因為是的充分不必要條件,所以是的必要不充分條件,所以,所以或,所以,所以實數(shù)的取值范圍是【點睛】本題主要考查根據(jù)真值表判斷復(fù)合命題中的單個命題的真假,根據(jù)充分不必要條件求參數(shù)的取值范圍,同時考查一元二次不等式的解法,分式不等式的解法.第(2)問關(guān)鍵是將問題等價轉(zhuǎn)化為兩個集合間的真包含關(guān)系18、(1);(2)【解析】(1)根據(jù)題意用表示出與,再代入,再化簡即可得出答案。(2)設(shè),利用表示出點,再將點代入橢圓,化簡即可得出答案。【詳解】(1)由題意知,所以化簡得:(2)設(shè),因為,則將代入橢圓得化簡得【點睛】本題考查軌跡方程,一般求某點的軌跡方程,只需要設(shè)該點為,利用所給條件建立的關(guān)系式,化簡即可。屬于基礎(chǔ)題。19、(1);(2)10.【解析】(1)由根據(jù)拋物線的定義求出可得拋物線方程;(2)求出拋物線過點A的切線,得出點M的坐標(biāo)即可求三角形面積.【小問1詳解】由拋物線的定義可知,即,拋物線的方程為.【小問2詳解】,且A在第一象限,,即A(4,4),顯然切線的斜率存在,故可設(shè)其方程為,由,消去得,即,令,解得,切線方程為.令x=0,得,即,又,,.20、(1);(2),,,;(3)存在,或,證明見解析.【解析】(1)設(shè)雙曲線的標(biāo)準(zhǔn)方程為,易知,設(shè),,代入求解即可;(2)分析圓,圓的方程即可求解;(3)利用圓的參數(shù)方程,設(shè),,利用,即可求解,再利用線段PQ上任意一點的特征證明點在曲面上;【小問1詳解】設(shè)雙曲線的標(biāo)準(zhǔn)方程為,由題意知,點,的橫坐標(biāo)分別為,,則設(shè)點,的坐標(biāo)為,,,,,解得,,又塔高米,,解得,故所求的雙曲線的方程為【小問2詳解】點在圓上,;點在圓上,;圓,其半徑為,;圓,其半徑為,【小問3詳解】存在點P、Q,使得P、A、Q三點共線.由點在半徑為的圓上,(為參數(shù));點在半徑為的圓上,(為參數(shù));由已知得,整理得兩式平方求和得,則或當(dāng)時,,當(dāng)時,證明:,則,利用,,其中又曲面上的每一點可以是圓與旋轉(zhuǎn)任意坐標(biāo)系上的雙曲線的交點,旋轉(zhuǎn)直角坐標(biāo)系,保持原點和y軸不變,點所在的軸為軸,此時,滿足,即即點是曲面上的點.21、(1)答案見解析(2)證明見解析【解析】(1)求解函數(shù)的導(dǎo)函數(shù),并且求的兩個根,然后分類討論,和三種情況下對應(yīng)的單調(diào)性;(2)令,通過二次求導(dǎo)法,判斷函數(shù)的單調(diào)性與最小值,設(shè)的零點為,求出取值范圍,最后將轉(zhuǎn)化為的對勾函數(shù)并求解最小值,即可證明出不等式.【小問1詳解】函數(shù)的定義域為∵令得∵,∴,得或①當(dāng),即時,時,或;時,.∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增②當(dāng),即時,時,或;時,.∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增③當(dāng),即時,∴在上單調(diào)遞增綜上所述:當(dāng)時,在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在上單調(diào)遞增【小問2詳解】令,()∴,令∴,∴在上單調(diào)遞增又∵,,∴使得,即(*)∴當(dāng)時,,∴,∴單調(diào)遞減∴當(dāng)時,,∴,∴單調(diào)遞增∴,()由(*)式可知:,∴,∴∵,∴函數(shù)單調(diào)遞減∴,∴∴【點睛】求解本題的關(guān)鍵是利用二次求導(dǎo)法,通過虛設(shè)零點,求解原函數(shù)的單調(diào)性與最小值,并通過最小值的取值范圍證明不等式.22、(1)見解析;(2)【解析】(1)用線線平行證明線面平行,∴在平面PCD內(nèi)作BE的平行線即可;(2)求二面角的大小,可以用空間向量進行求解,根據(jù)已知條件,以AD中點O為原點,OB,AD,OP分別為x、y、z軸建立坐標(biāo)系﹒【小問1詳解】如圖,取PD中點F,連接EF,F(xiàn)C﹒∵E是AP中點,∴EFAD,由題知BCAD,∴BCEF,∴BCFE是平行四邊形,∴BE∥CF,又CF平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 尋常痤瘡的臨床護理
- 生涯發(fā)展指導(dǎo)課:《規(guī)劃的人生更精彩》學(xué)習(xí)心得體會模版
- 買賣房過渡合同范例
- 人防工程租賃合同范例
- 2025年餐飲服務(wù)員年度工作總結(jié)模版
- 個人月度工作總結(jié)模版
- 2024年太陽能組件生產(chǎn)裝備項目資金需求報告代可行性研究報告
- 2025年小學(xué)數(shù)學(xué)組教研活動總結(jié)模版
- 保險推廣合同范例
- 個人桑蠶養(yǎng)殖合同范例
- 新能源汽車維護與故障診斷課件 項目一 安全防護知識與應(yīng)用
- 2024ESC心房顫動管理指南解讀
- 2024年計算機軟件水平考試-高級系統(tǒng)架構(gòu)師考試近5年真題附答案
- 浙江省2024年全國中學(xué)生奧林匹克數(shù)學(xué)競賽初賽試題 含解析
- 2024-2025學(xué)年小學(xué)信息技術(shù)(信息科技)六年級全一冊義務(wù)教育版(2024)教學(xué)設(shè)計合集
- 九型人格之職場心理學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 基于機器學(xué)習(xí)的緩存優(yōu)化
- 肝損傷患者的護理
- 學(xué)術(shù)論文文獻閱讀與機助漢英翻譯智慧樹知到答案2024年重慶大學(xué)
- 老年心房顫動診治中國專家共識(2024)解讀
- 新高考背景下2025屆高三歷史一輪復(fù)習(xí)策略講座
評論
0/150
提交評論