




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
甘肅省河西五市部分普通高中2023-2024學(xué)年高二上數(shù)學(xué)期末考試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.曲線在處的切線的斜率為()A.-1 B.1C.2 D.32.在四棱錐P-ABCD中,底面ABCD,,,點E為PA的中點,,,,則點B到平面PCD的距離為()A. B.C. D.3.設(shè)等差數(shù)列的前n項和為,若,,則()A.60 B.80C.90 D.1004.空間四點共面,但任意三點不共線,若為該平面外一點且,則實數(shù)的值為()A. B.C. D.5.已知命題:拋物線的焦點坐標(biāo)為;命題:等軸雙曲線的離心率為,則下列命題是真命題的是()A. B.C. D.6.已知,是雙曲線的左右焦點,過的直線與曲線的右支交于兩點,則的周長的最小值為()A. B.C. D.7.下圖是一個“雙曲狹縫”模型,直桿沿著與它不平行也不相交的軸旋轉(zhuǎn)時形成雙曲面,雙曲面的邊緣為雙曲線.已知該模型左、右兩側(cè)的兩段曲線(曲線AB與曲線CD)所在的雙曲線離心率為2,曲線AB與曲線CD中間最窄處間的距離為10cm,點A與點C,點B與點D均關(guān)于該雙曲線的對稱中心對稱,且|AB|=30cm,則|AD|=()A.10cm B.20cmC.25cm D.30cm8.《米老鼠和唐老鴨》這部動畫給我們的童年帶來了許多美好的回憶,令我們印象深刻.如圖所示,有人用3個圓構(gòu)成米奇的簡筆畫形象.已知3個圓方程分別為:圓圓,圓若過原點的直線與圓、均相切,則截圓所得的弦長為()A. B.C. D.9.已知雙曲線:()的離心率為,則的漸近線方程為()A. B.C. D.10.在圓上任取一點P,過點P作x軸的垂線段PD,D為垂足,當(dāng)點P在圓上運動時,線段PD的中點M的軌跡記為C,則曲線C的離心率為()A. B.C. D.11.橢圓與(0<k<9)的()A.長軸的長相等B.短軸的長相等C.離心率相等D.焦距相等12.如圖,在直三棱柱中,,,D為AB的中點,點E在線段上,點F在線段上,則線段EF長的最小值為()A B.C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線上一橫坐標(biāo)為5的點到焦點的距離為6,且該拋物線的準(zhǔn)線與雙曲線:的兩條漸近線所圍成的三角形面積為,則雙曲線的離心率為__________.14.如圖的形狀出現(xiàn)在南宋數(shù)學(xué)家楊輝所著的《詳解九章算法·商功》中,后人稱為“三角垛”.“三角垛”的最上面一層有1個球,第二層有3個球,第三層有6個球…….設(shè)各層球數(shù)構(gòu)成一個數(shù)列,其中,,,則______15.經(jīng)過點,圓心在x軸正半軸上,半徑為5的圓的方程為________16.已知、是橢圓的兩個焦點,點在橢圓上,且,,則橢圓離心率是___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)當(dāng)時,討論的單調(diào)性;(2)當(dāng)時,證明18.(12分)已知拋物線的頂點在原點,焦點在軸上,且拋物線上有一點到焦點的距離為6.(1)求拋物線的方程;(2)若不過原點的直線與拋物線交于A、B兩點,且,求證:直線過定點并求出定點坐標(biāo).19.(12分)如圖甲是由正方形,等邊和等邊組成的一個平面圖形,其中,將其沿,,折起得三棱錐,如圖乙.(1)求證:平面平面;(2)過棱作平面交棱于點,且三棱錐和的體積比為,求直線與平面所成角的正弦值.20.(12分)圓過點A(1,-2),B(-1,4),求:(1)周長最小的圓的方程;(2)圓心在直線2x-y-4=0上的圓的方程21.(12分)的內(nèi)角A,B,C的對邊分別為a,b,c.已知.(1)求B.(2)___________,若問題中的三角形存在,試求出;若問題中的三角形不存在,請說明理由.在①,②,③這三個條件中任選一個,補充在橫線上.注:如果選擇多個條件分別解答,按第一個解答計分.22.(10分)如圖,四棱錐中,底面為梯形,底面,,,,.(1)求證:平面平面;(2)設(shè)為上一點,滿足,若直線與平面所成的角為,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】先求解出導(dǎo)函數(shù),然后代入到導(dǎo)函數(shù)中,所求導(dǎo)數(shù)值即為切線斜率.【詳解】因為,所以,所以切線的斜率為.故選:D.2、D【解析】為中點,連接,易得為平行四邊形,進(jìn)而可知B到平面PCD的距離即為到平面PCD的距離,再由線面垂直的性質(zhì)確定線線垂直,在直角三角形中應(yīng)用勾股定理求相關(guān)線段長,即可得△為直角三角形,最后應(yīng)用等體積法求點面距即可.【詳解】若為中點,連接,又E為PA的中點,所以,,又,,則且,所以為平行四邊形,即,又面,面,所以面,故B到平面PCD的距離,即為到平面PCD的距離,由底面ABCD,面ABCD,即,,,又,即,,則面,面,即,而,,,,易知:,在△中;在△中;在△中;綜上,,故,又,則.所以B到平面PCD的距離為.故選:D3、D【解析】由題設(shè)條件求出,從而可求.【詳解】設(shè)公差為,因為,,故,解得,故,故選:D.4、A【解析】由空間向量共面定理構(gòu)造方程求得結(jié)果.【詳解】空間四點共面,但任意三點不共線,,解得:.故選:A.5、D【解析】求出的焦點坐標(biāo),及等軸雙曲線的離心率,判斷出為假命題,q為真命題,進(jìn)而判斷出答案.【詳解】拋物線的焦點坐標(biāo)為,故命題為假命題;命題:等軸雙曲線中,,所以離心率為,故命題q為真命題,所以為真命題,其他選項均為假命題.故選:D6、C【解析】根據(jù)雙曲線的定義和性質(zhì),當(dāng)弦垂直于軸時,即可求出三角形的周長的最小值.【詳解】由雙曲線可知:的周長為.當(dāng)軸時,周長最小值為故選:C7、B【解析】由離心率求出雙曲線方程,由對稱性設(shè)出點A,B,D坐標(biāo),求出坐標(biāo),求出答案.【詳解】由題意得:,解得:,因為離心率,所以,,故雙曲線方程為,設(shè),則,,則,所以,則,解得:,故.故選:B8、A【解析】設(shè)直線,利用直線與圓相切,求得斜率,再利用弦長公式求弦長【詳解】設(shè)過點的直線.由直線與圓、圓均相切,得解得(1).設(shè)點到直線的距離為則(2).又圓的半徑直線截圓所得弦長結(jié)合(1)(2)兩式,解得9、A【解析】先根據(jù)雙曲線的離心率得到,然后由,得,即為所求的漸近線方程,進(jìn)而可得結(jié)果【詳解】∵雙曲線的離心率,∴又由,得,即雙曲線()的漸近線方程為,∴雙曲線的漸近線方程為故選:A10、B【解析】設(shè),,則由題意可得,代入圓方程中化簡可得曲線C的方程,從而可求出離心率【詳解】設(shè),,則,得,所以,因為點在圓上,所以,即,所以點的軌跡方程為,所以,則所以離心率為,故選:B11、D【解析】根據(jù)橢圓方程求得兩個橢圓的,由此確定正確選項.【詳解】橢圓與(0<k<9)的焦點分別在x軸和y軸上,前者a2=25,b2=9,則c2=16,后者a2=25-k,b2=9-k,則顯然只有D正確故選:D12、B【解析】根據(jù)給定條件建立空間直角坐標(biāo)系,令,用表示出點E,F(xiàn)坐標(biāo),再由兩點間距離公式計算作答.【詳解】依題意,兩兩垂直,建立如圖所示的空間直角坐標(biāo)系,則,,設(shè),則,設(shè),有,線段EF長最短,必滿足,則有,解得,即,因此,,當(dāng)且僅當(dāng)時取“=”,所以線段EF長的最小值為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】由題意求得拋物線的準(zhǔn)線方程為,進(jìn)而得到準(zhǔn)線與雙曲線C的漸近線圍成的三角形面積,求得,再結(jié)合和離心率的定義,即可求解.【詳解】由題意,拋物線上一橫坐標(biāo)為5的點到焦點的距離為6,根據(jù)拋物線定義,可得,即,所以拋物線的準(zhǔn)線方程為,又由雙曲線C的兩條漸近線方程為,則拋物線的準(zhǔn)線與雙曲線C的兩條漸近線圍成的三角形面積為,解得,又由,可得,所以雙曲線C離心率.故答案為:3.14、15【解析】由分析可知每次小球數(shù)量剛好是等差數(shù)列的求和,最后直接公式即可算出答案.【詳解】由題意可知,,所以,故答案為:1515、【解析】設(shè)圓方程為,代入原點計算得到答案.【詳解】設(shè)圓方程為經(jīng)過點,代入圓方程則圓方程為故答案為【點睛】本題考查了圓方程的計算,設(shè)出圓方程是解題的關(guān)鍵.16、【解析】先由,根據(jù)橢圓的定義,求出,,再由余弦定理,根據(jù),即可列式求出離心率.【詳解】因為點在橢圓上,所以,又,所以,因,在中,由,根據(jù)余弦定理可得,解得(負(fù)值舍去)故答案為:.【點睛】本題主要考查求橢圓的離心率,屬于??碱}型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞減,在單調(diào)遞增;(2)見解析.【解析】(1)求f(x)導(dǎo)數(shù),討論導(dǎo)數(shù)的正負(fù)即可求其單調(diào)性;(2)由于,則,只需證明,構(gòu)造函數(shù),證明其最小值大于0即可.【小問1詳解】時,,當(dāng)時,,∴,當(dāng)時,,∴,∴在單調(diào)遞減,在單調(diào)遞增;【小問2詳解】由于,∴,∴只需證明,令,則,∴在上為增函數(shù),而,∴在上有唯一零點,且,當(dāng)時,,g(x)單調(diào)遞減,當(dāng)時,,g(x)單調(diào)遞增,∴的最小值為,由,得,則,∴,當(dāng)且僅當(dāng)時取等號,而,∴,∴,即,∴當(dāng)時,.【點睛】本題考察了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,也考察了利用導(dǎo)數(shù)研究函數(shù)的最值,解題過程中設(shè)計到隱零點的問題,需要掌握隱零點處理問題的常見思路和方法.18、(1)(2)證明見解析,定點坐標(biāo)為(8,0).【解析】(1)根據(jù)拋物線的定義,即可求出結(jié)果;(2)由題意直線方程可設(shè)為,將其與拋物線方程聯(lián)立,再將轉(zhuǎn)化為,根據(jù)韋達(dá)定理,化簡求解,即可求出定點.【小問1詳解】解:拋物線的頂點在原點,焦點在軸上,且拋物線上有一點,設(shè)拋物線的方程為,到焦點的距離為6,即有點到準(zhǔn)線的距離為6,即解得,即拋物線的標(biāo)準(zhǔn)方程為;【小問2詳解】證明:由題意知直線不能與軸平行,故直線方程可設(shè)為,與拋物線聯(lián)立得,消去得,設(shè),則,則,,由,可得,所以,即,亦即,又,解得,所以直線方程為,易得直線過定點.19、(1)證明見解析;(2).【解析】(1)取的中點為,連接,,證明,,即證平面,即證得面面垂直;(2)建立如圖空間直角坐標(biāo)系,寫出對應(yīng)點的坐標(biāo)和向量的坐標(biāo),再計算平面法向量,利用所求角的正弦為即得結(jié)果.【詳解】(1)證明:如圖,取的中點為,連接,.∵,∴.∵,,∴,同理.又,∴,∴.∵,,平面,∴平面.又平面,∴平面平面;(2)解:如圖建立空間直角坐標(biāo)系,根據(jù)邊長關(guān)系可知,,,,,∴,.∵三棱錐和的體積比為,∴,∴,∴.設(shè)平面的法向量為,則,令,得.設(shè)直線與平面所成角為,則.∴直線與平面所成角的正弦值為.【點睛】方法點睛:求空間中直線與平面所成角的常見方法為:(1)定義法:直接作平面的垂線,找到線面成角;(2)等體積法:不作垂線,通過等體積法間接求點到面的距離,距離與斜線長的比值即線面成角的正弦值;(3)向量法:利用平面法向量與斜線方向向量所成的余弦值的絕對值,即是線面成角的正弦值.20、(1)x2+(y-1)2=10;(2)(x-3)2+(y-2)2=20.【解析】(1)根據(jù)當(dāng)AB為直徑時,過A,B的圓的半徑最小進(jìn)行求解即可;(2)根據(jù)垂徑定理,通過解方程組求出圓心坐標(biāo),進(jìn)而可以求出圓的方程.【詳解】解:(1)當(dāng)AB為直徑時,過A,B的圓的半徑最小,從而周長最小,即AB中點(0,1)為圓心,半徑r=|AB|=.故圓的方程為x2+(y-1)2=10;(2)由于AB的斜率為k=-3,則AB的垂直平分線的斜率為,AB的垂直平分線的方程是y-1=x,即x-3y+3=0.由解得即圓心坐標(biāo)是C(3,2)又r=|AC|==2.所以圓的方程是(x-3)2+(y-2)2=20.21、(1)(2)答案見解析【解析】(1)由正弦定理及正弦的兩角和公式可求解;(2)選擇條件①,由正弦定理及輔助角公式可求解;選擇條件②,由余弦定理及正切三角函數(shù)可求解;選擇條件③,由余弦定理可求解【小問1詳解】由,可得,則.∴,在中,,則,∵,∴,∴,∵,∴.【小問2詳解】選擇條件①,在中,,可得,∵,∴,∴,根據(jù)輔助角公式,可得,∵,∴,即,故.選擇條件②由,得,∵,∴,因此,,整理得,即,則.在中,,∴.故.選擇條件③由,得,即,整理得,由于,則方程無解,故不存在這樣的三角形.22、(1)證明見解析;(2).【解析】(1)由三角形的邊角關(guān)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)絡(luò)安全的防護(hù)措施總結(jié)計劃
- 2024年上海市珠峰中學(xué)教師招聘筆試真題
- 2024年廣東省交通運輸廳下屬事業(yè)單位真題
- 學(xué)習(xí)如何進(jìn)行軟件項目的風(fēng)險評估試題及答案
- 2024年湖州房地產(chǎn)交易有限公司招聘筆試真題
- 2024年河南省事業(yè)單位聯(lián)考筆試真題
- 前景分析的年度方法計劃
- 2024年廣東深圳小學(xué)全國選聘教師筆試真題
- 倉庫內(nèi)耗管理的有效對策計劃
- 團(tuán)隊目標(biāo)與個人目標(biāo)的統(tǒng)計劃
- 中醫(yī)經(jīng)絡(luò)穴位與按摩療法展示
- 推箱子課設(shè)報告
- 網(wǎng)絡(luò)系統(tǒng)建設(shè)與運維(中級) 5.1.1-基于PAP認(rèn)證的公司與分部安全互聯(lián)v1.2
- 2025年《電泳涂裝生產(chǎn)線安全操作規(guī)程》符合安全標(biāo)準(zhǔn)化要求
- 【MOOC】游戲開發(fā)程序設(shè)計基礎(chǔ)-中國傳媒大學(xué) 中國大學(xué)慕課MOOC答案
- 【MOOC】百年歌聲-中國流行音樂鑒賞-中國礦業(yè)大學(xué) 中國大學(xué)慕課MOOC答案
- 2024年工藝美術(shù)研究報告
- 《民航服務(wù)與溝通學(xué)》課件-第18講 兒童旅客
- 兒科發(fā)熱護(hù)理常規(guī)
- 《臨床藥學(xué)》課件
- 檢驗科個人防護(hù)培訓(xùn)材料
評論
0/150
提交評論