廣東省廣雅中學(xué)、執(zhí)信、六中、深外四校2024屆數(shù)學(xué)高二上期末質(zhì)量檢測模擬試題含解析_第1頁
廣東省廣雅中學(xué)、執(zhí)信、六中、深外四校2024屆數(shù)學(xué)高二上期末質(zhì)量檢測模擬試題含解析_第2頁
廣東省廣雅中學(xué)、執(zhí)信、六中、深外四校2024屆數(shù)學(xué)高二上期末質(zhì)量檢測模擬試題含解析_第3頁
廣東省廣雅中學(xué)、執(zhí)信、六中、深外四校2024屆數(shù)學(xué)高二上期末質(zhì)量檢測模擬試題含解析_第4頁
廣東省廣雅中學(xué)、執(zhí)信、六中、深外四校2024屆數(shù)學(xué)高二上期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省廣雅中學(xué)、執(zhí)信、六中、深外四校2024屆數(shù)學(xué)高二上期末質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若點是函數(shù)圖象上的動點(其中的自然對數(shù)的底數(shù)),則到直線的距離最小值為()A. B.C. D.2.設(shè)等差數(shù)列前n項和是,若,則的通項公式可以是()A. B.C. D.3.在空間直角坐標系中,,,平面的一個法向量為,則平面與平面夾角的正弦值為()A. B.C. D.4.曲線與曲線()的()A.長軸長相等 B.短軸長相等C.離心率相等 D.焦距相等5.若,,,則a,b,c與1的大小關(guān)系是()A. B.C. D.6.如圖,直四棱柱的底面是菱形,,,M是的中點,則異面直線與所成角的余弦值為()A. B.C. D.7.已知雙曲線,則該雙曲線的實軸長為()A.1 B.2C. D.8.正方體的表面積為,則正方體外接球的表面積為(

)A. B.C. D.9.如圖,已知雙曲線的左右焦點分別為、,,是雙曲線右支上的一點,,直線與軸交于點,的內(nèi)切圓半徑為,則雙曲線的離心率是()A. B.C. D.10.已知數(shù)列滿足,則()A. B.1C.2 D.411.頂點在原點,關(guān)于軸對稱,并且經(jīng)過點的拋物線方程為()A. B.C. D.12.酒駕是嚴重危害交通安全的違法行為.根據(jù)國家有關(guān)規(guī)定:100血液中酒精含量在20~80之間為酒后駕車,80及以上為醉酒駕車.假設(shè)某駕駛員喝了一定量的酒后,其血液中的酒精含量上升到了1.2,且在停止喝酒以后,他血液中的酒精含量會以每小時20%的速度減少,若他想要在不違法的情況下駕駛汽車,則至少需經(jīng)過的小時數(shù)約為()(參考數(shù)據(jù):,)A.6 B.7C.8 D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前n項和,則其通項公式______14.二進制數(shù)轉(zhuǎn)化成十進制數(shù)為______.15.若橢圓的一個焦點為,則p的值為______16.如圖,一個酒杯的內(nèi)壁的軸截面是拋物線的一部分,杯口寬cm,杯深8cm,稱為拋物線酒杯.①在杯口放一個表面積為的玻璃球,則球面上的點到杯底的最小距離為______cm;②在杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,則玻璃球的半徑的取值范圍為______(單位:cm)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓過點,且離心率.(1)求橢圓C的標準方程;(2)若動點在橢圓上,且在第一象限內(nèi),點分別為橢圓的左、右頂點,直線分別與橢圓C交于點,過作直線的平行線與橢圓交于點,問直線是否過定點,若經(jīng)過定點,求出該定點的坐標;若不經(jīng)過定點,請說明理由.18.(12分)已知點P到點的距離比它到直線的距離小1.(1)求點P的軌跡方程;(2)點M,N在點P的軌跡上且位于x軸的兩側(cè),(其中O為坐標原點),求面積的最小值.19.(12分)已知圓,直線(1)判斷直線l與圓C的位置關(guān)系;(2)過點作圓C的切線,求切線的方程20.(12分)已知橢圓的離心率為,以橢圓兩個焦點與短軸的一個端點為頂點構(gòu)成的三角形的面積為(1)求橢圓C的標準方程;(2)過點作直線l與橢圓C相切于點Q,且直線l斜率大于0,過線段PQ的中點R作直線交橢圓于A,B兩點(點A,B不在y軸上),連結(jié)PA,PB,分別與橢圓交于點M,N,試判斷直線MN的斜率是否為定值;若是,請求出該定值21.(12分)如圖,ABCD是邊長為2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF=2(1)證明:AC∥平面BEF;(2)求點C到平面BEF的距離22.(10分)設(shè)橢圓的左焦點為,上頂點為.已知橢圓的短軸長為4,離心率為(1)求橢圓的方程;(2)設(shè)點在橢圓上,且異于橢圓的上、下頂點,點為直線與軸的交點,點且(為原點),求直線的斜率

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設(shè),,設(shè)與平行且與相切的直線與切于,由導(dǎo)數(shù)的幾何意義可求出點的坐標,則到直線的距離最小值為點到直線的距離,再求解即可.【詳解】解:設(shè),,設(shè)與平行且與相切的直線與切于所以所以則到直線的距離為,即到直線的距離最小值為,故選:A2、D【解析】根據(jù)題意可得公差的范圍,再逐一分析各個選項即可得出答案.【詳解】解:設(shè)等差數(shù)列的公差為,由,得,所以,故AB錯誤;若,則,與題意矛盾,故C錯誤;若,則,符合題意.故選:D.3、A【解析】根據(jù)給定條件求出平面的法向量,再借助空間向量夾角公式即可計算作答.【詳解】設(shè)平面的法向量為,則,令,得,令平面與平面夾角為,則,,所以平面與平面夾角的正弦值為.故選:A4、D【解析】分別求出兩橢圓的長軸長、短軸長、離心率、焦距,即可判斷.【詳解】曲線表示焦點在軸上,長軸長為,短軸長為,離心率為,焦距為;曲線表示焦點在軸上,長軸長為,短軸長為,離心率為,焦距為.對照選項可知:焦距相等.故選:D.5、C【解析】根據(jù)條件構(gòu)造函數(shù),并求其導(dǎo)數(shù),判斷該函數(shù)的單調(diào)性,據(jù)此作出該函數(shù)的大致圖象,由圖象可判斷a,b,c與1的大小關(guān)系.【詳解】令,則當(dāng)時,,當(dāng)時,即函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,而,由可知,故作出函數(shù)大致圖象如圖:由圖象易知,,故選:C.6、D【解析】用向量分別表示,利用向量的夾角公式即可求解.【詳解】由題意可得,故選:D【點睛】本題主要考查用向量的夾角公式求異面直線所成的角,屬于基礎(chǔ)題.7、B【解析】根據(jù)給定的雙曲線方程直接計算即可作答.【詳解】雙曲線的實半軸長,所以該雙曲線的實軸長為2.故選:B8、B【解析】由正方體表面積求得棱長,再求得正方體的對角線長,即為外接球的直徑,從而可得球表面積【詳解】設(shè)正方體棱長為,由得,正方體對角線長,所以其外接球半徑為,球表面積為故選:B9、D【解析】根據(jù)給定條件結(jié)合直角三角形內(nèi)切圓半徑與邊長的關(guān)系求出雙曲線實半軸長a,再利用離心率公式計算作答.【詳解】依題意,,的內(nèi)切圓半徑,由直角三角形內(nèi)切圓性質(zhì)知:,由雙曲線對稱性知,,于是得,即,又雙曲線半焦距c=2,所以雙曲線的離心率.故選:D【點睛】結(jié)論點睛:二直角邊長為a,b,斜邊長為c的直角三角形內(nèi)切圓半徑.10、B【解析】根據(jù)遞推式以及迭代即可.【詳解】由,得,,,,,,.故選:B11、C【解析】根據(jù)題意,設(shè)拋物線的方程為,進而待定系數(shù)求解即可.【詳解】解:由題,設(shè)拋物線的方程為,因為在拋物線上,所以,解得,即所求拋物線方程為故選:C12、C【解析】根據(jù)題意列出不等式,利用指對數(shù)冪的互化和對數(shù)的運算公式即可解出不等式.【詳解】設(shè)該駕駛員至少需經(jīng)過x個小時才能駕駛汽車,則,所以,則,所以該駕駛員至少需經(jīng)過約8個小時才能駕駛汽車.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用當(dāng)時,,可求出此時的通項公式,驗證n=1時是否適合,可得答案.【詳解】當(dāng)時,,當(dāng)時,不適合上式,∴,故答案為:.14、13【解析】根據(jù)二進制數(shù)和十進制數(shù)之間的轉(zhuǎn)換方法即可求解.【詳解】.故答案為:13.15、3【解析】利用橢圓標準方程概念求解【詳解】因為焦點為,所以焦點在y軸上,所以故答案:316、①.②.【解析】根據(jù)題意,,進而得,,故最小距離為;進而建立坐標系,得拋物線方程為,當(dāng)杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,此時設(shè)玻璃球軸截面所在圓的方程為,進而只需滿足拋物線上的點到圓心的距離大于等于半徑恒成立,再根據(jù)幾何關(guān)系求解即可.【詳解】因為杯口放一個表面積為的玻璃球,所以球的半徑為,又因為杯口寬cm,所以如圖1所示,有,所以,所以,所以,又因為杯深8cm,即故最小距離為如圖1所示,建立直角坐標系,易知,設(shè)拋物線的方程為,所以將代入得,故拋物線方程為,當(dāng)杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,如圖2,設(shè)玻璃球軸截面所在圓的方程為,依題意,需滿足拋物線上的點到圓心的距離大于等于半徑恒成立,即,則有恒成立,解得,可得.所以玻璃球的半徑的取值范圍為.故答案為:;【點睛】本題考查拋物線的應(yīng)用,考查數(shù)學(xué)建模能力,運算求解能力,是中檔題.本題第二問解題的關(guān)鍵在于設(shè)出球觸及酒杯底部的軸截面圓的方程,進而將問題轉(zhuǎn)化為拋物線上的點到圓心的距離大于等于半徑恒成立求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)過定點,【解析】(1)根據(jù)橢圓上的點及離心率求出a,b即可;(2)設(shè)點,設(shè)直線的方程為,聯(lián)立方程,得到根與系數(shù)的關(guān)系,利用條件化簡,結(jié)合橢圓方程,求出即可得解.【小問1詳解】由,有,又,所以,橢圓C的標準方程為.【小問2詳解】設(shè)點,設(shè)直線的方程為.如圖,聯(lián)立,消有:,韋達定理有:由,所以,又,所以又,所以.又所以有,把代入有:,解得或2,又直線不過右端點,所以,則,所以直線過定點.18、(1);(2).【解析】(1)根據(jù)給定條件可得點P到點的距離等于它到直線的距離,再由拋物線定義即可得解.(2)由(1)設(shè)出點M,N的坐標,再結(jié)合給定條件及三角形面積定理列式,借助均值不等式計算作答.【小問1詳解】因點P到點的距離比它到直線的距離小1,顯然點P與F在直線l同側(cè),于是得點P到點的距離等于它到直線的距離,則點P的軌跡是以F為焦點,直線為準線的拋物線,所以點P的軌跡方程是.【小問2詳解】由(1)設(shè)點,,且,因,則,解得,S,當(dāng)且僅當(dāng),即時取“=”,所以面積的最小值為.【點睛】思路點睛:圓錐曲線中的幾何圖形面積范圍或最值問題,可以以直線的斜率、橫(縱)截距、圖形上動點的橫(縱)坐標為變量,建立函數(shù)關(guān)系求解作答.19、(1)相交.(2)或.【解析】(1)先判斷出直線恒過定點(2,1),由(2,1)在圓內(nèi),即可判斷;(2)分斜率存在與不存在兩種情況,利用幾何法求解.【小問1詳解】直線方程,即,則直線恒過定點(2,1).因為,則點(2,1)位于圓的內(nèi)部,故直線與圓相交.【小問2詳解】直線斜率不存在時,直線滿足題意;②直線斜率存在的時候,設(shè)直線方程為,即.因為直線與圓相切,所以圓心到直線的距離等于半徑,即,解得:,則直線方程為:.綜上可得,直線方程或.20、(1)(2)是,【解析】(1)根據(jù)離心率以及橢圓兩個焦點與短軸的一個端點為頂點構(gòu)成的三角形的面積列出等式即可求解;(2)設(shè)出相關(guān)直線與相關(guān)點的坐標,直線與橢圓聯(lián)立,點的坐標配合斜率公式化簡,再運用韋達理化簡可證明.【小問1詳解】由題意得,解得,則橢圓C的標準方程為【小問2詳解】設(shè)切線PQ的方程為,,,,,由,消去y得①,則,解得或(舍去),將代入①得,,解得,則,所以,又R為PQ中點,則,因為PA,PB斜率都存在,不妨設(shè),,由①可得,所以,,同理,,則,又R,A,B三點共線,則,化簡得,所以.21、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,進而求出平面BEF的法向量,然后證明線面平行;(2)算出在向量方向上的投影,進而求得答案.【小問1詳解】因為DE⊥平面ABCD,DA、DC平面ABCD,所以DE⊥DA,DE⊥DC,因為ABCD是正方形,所以DA⊥DC.以D為坐標原點,所在方向分別為軸的正方向建立空間直角坐標系,則A(2,0,0),C(0,2,0),B(2,2,0),E(0,0,2),F(xiàn)(2,0,1),所以,,設(shè)平面BEF的法向量,因為,所以-2x-2y+2z=0,-2y+z=0,令y=1,則=(1,1,2),又因為=(-2,2,0),所以,即,而

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論