版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省惠陽高級中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)函數(shù)是定義在上的奇函數(shù),且,當(dāng)時,有恒成立.則不等式的解集為()A. B.C. D.2.已知拋物線上一點的縱坐標(biāo)為4,則點到拋物線焦點的距離為A.2 B.3C.4 D.53.在平行六面體中,點P在上,若,則()A. B.C. D.4.與直線關(guān)于軸對稱的直線的方程為()A. B.C. D.5.已知等差數(shù)列滿足,,數(shù)列滿足,記數(shù)列的前n項和為,若對于任意的,,不等式恒成立,則實數(shù)t的取值范圍為()A. B.C. D.6.?dāng)?shù)列滿足,且,則的值為()A.2 B.1C. D.-17.執(zhí)行如圖所示的程序框圖,輸出的s值為()A.8 B.9C.27 D.368.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B.C. D.9.“﹣3<m<4”是“方程表示橢圓”的()條件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要10.經(jīng)過點且與雙曲線有共同漸近線的雙曲線方程為()A. B.C. D.11.已知是兩個數(shù)1,9的等比中項,則圓錐曲線的離心率為()A.或 B.或C. D.12.下列雙曲線中,焦點在軸上且漸近線方程為的是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點處的切線方程為_____________.14.如圖所示的是一個正方體的平面展開圖,,則在原來的正方體中,直線與平面所成角的正弦值為___________.15.中小學(xué)生的視力狀況受到社會的關(guān)注.某市有關(guān)部門從全市6萬名高一學(xué)生中隨機抽取400名學(xué)生,對他們的視力狀況進(jìn)行一次調(diào)查統(tǒng)計,將所得到的有關(guān)數(shù)據(jù)繪制成頻率分布直方圖,如圖所示,從左至右五個小組的頻率之比為,則抽取的這400名高一學(xué)生中視力在范圍內(nèi)的學(xué)生有______人.16.雙曲線的離心率______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點分別為,過右焦點作直線交于,其中的周長為的離心率為.(1)求的方程;(2)已知的重心為,設(shè)和的面積比為,求實數(shù)的取值范圍.18.(12分)設(shè)函數(shù).(1)當(dāng)k=1時,求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時,求函數(shù)在上的最小值m和最大值M.19.(12分)設(shè)曲線在點(1,0)處的切線方程為.(1)求a,b的值;(2)求證:;(3)當(dāng),求a的取值范圍.20.(12分)求滿足下列條件的雙曲線的標(biāo)準(zhǔn)方程(1)焦點在x軸上,實軸長為4,實半軸長是虛半軸長的2倍;(2)焦點在y軸上,漸近線方程為,焦距長為21.(12分)如圖,在四棱錐中,平面,,且,,,,,為的中點(1)求證:平面;(2)在線段上是否存在一點,使得直線與平面所成角的正弦值為,若存在,求出的值;若不存在,說明理由22.(10分)已知橢圓的離心率為,以坐標(biāo)原點為圓心,以橢圓M的短半軸長為半徑的圓與直線有且只有一個公共點(1)求橢圓M的標(biāo)準(zhǔn)方程;(2)過橢圓M的右焦點F的直線交橢圓M于A,B兩點,過F且垂直于直線的直線交橢圓M于C,D兩點,則是否存在實數(shù)使成立?若存在,求出的值;若不存在,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)當(dāng)時,可知在上單調(diào)遞減,結(jié)合可確定在上的解集;根據(jù)奇偶性可確定在上的解集;由此可確定結(jié)果.【詳解】,當(dāng)時,,在上單調(diào)遞減,,,在上的解集為,即在上的解集為;又為上的奇函數(shù),,為上的偶函數(shù),在上的解集為,即在上的解集為;當(dāng)時,,不合題意;綜上所述:的解集為.故選:.【點睛】本題考查利用函數(shù)的單調(diào)性和奇偶性求解函數(shù)不等式的問題,關(guān)鍵是能夠通過構(gòu)造函數(shù)的方式,確定所構(gòu)造函數(shù)的單調(diào)性和奇偶性,進(jìn)而根據(jù)零點確定不等式的解集.2、D【解析】拋物線焦點在軸上,開口向上,所以焦點坐標(biāo)為,準(zhǔn)線方程為,因為點A的縱坐標(biāo)為4,所以點A到拋物線準(zhǔn)線的距離為,因為拋物線上的點到焦點的距離等于到準(zhǔn)線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應(yīng)用拋物線定義和拋物線上點的性質(zhì)拋物線上的點到焦點的距離,考查學(xué)生的運算求解能力.點評:拋物線上的點到焦點的距離等于到準(zhǔn)線的距離,這條性質(zhì)在解題時經(jīng)常用到,可以簡化運算.3、C【解析】利用空間向量基本定理,結(jié)合空間向量加法的法則進(jìn)行求解即可.【詳解】因為,,所以有,因此,故選:C4、D【解析】點關(guān)于x軸對稱,橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù),據(jù)此即可求解.【詳解】設(shè)(x,y)是與直線關(guān)于軸對稱的直線上任意一點,則(x,-y)在上,故,∴與直線關(guān)于軸對稱的直線的方程為.故選:D.5、B【解析】由等差數(shù)列基本量法求出通項公式,用裂項相消法求得,求出的最大值,然后利用關(guān)于的不等式是一次不等式列出滿足的不等關(guān)系求得其范圍【詳解】設(shè)等差數(shù)列公差為,則由已知得,解得,∴,,∴,易知數(shù)列是遞增數(shù)列,且,∴若對于任意的,,不等式恒成立,即,又,∴,解得或故選:B【點睛】本題考查求等差數(shù)列的通項公式,考查裂項相消法求數(shù)列的和,考查不等式恒成立問題,解題關(guān)鍵是掌握不等式恒成立問題的轉(zhuǎn)化與化歸思想,不等式恒成立首先轉(zhuǎn)化為求數(shù)列的單調(diào)性與最值,其次轉(zhuǎn)化為一次不等式恒成立6、D【解析】根據(jù)數(shù)列的遞推關(guān)系式,求得數(shù)列的周期性,結(jié)合周期性得到,即可求解.【詳解】解:由題意,數(shù)列滿足,且,可得,可得數(shù)列是以三項為周期的周期數(shù)列,所以.故選:D.7、B【解析】執(zhí)行程序框圖,第一次循環(huán),,滿足;第二次循環(huán),,滿足;第三次循環(huán),,不滿足,輸出,故選B.【方法點睛】本題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問題時一定要正確控制循環(huán)次數(shù);(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達(dá)到輸出條件即可.8、B【解析】寫出每次循環(huán)的結(jié)果,即可得到答案.【詳解】當(dāng)時,,,,;,此時,退出循環(huán),輸出的的為.故選:B【點睛】本題考查程序框圖的應(yīng)用,此類題要注意何時循環(huán)結(jié)束,建議數(shù)據(jù)不大時采用寫出來的辦法,是一道容易題.9、B【解析】求出方程表示橢圓的充要條件是且,由此可得答案.【詳解】因為方程表示橢圓的充要條件是,解得且,所以“﹣3<m<4”是“方程表示橢圓”的必要不充分條件.故選:B【點睛】本題考查了由方程表示橢圓求參數(shù)的范圍,考查了充要條件和必要不充分條件,本題易錯點警示:漏掉,本題屬于基礎(chǔ)題.10、C【解析】共漸近線的雙曲線方程,設(shè),把點代入方程解得參數(shù)即可.【詳解】設(shè),把點代入方程解得參數(shù),所以化簡得方程故選:C.11、A【解析】根據(jù)題意可知,當(dāng)時,根據(jù)橢圓離心率公式,即可求出結(jié)果;當(dāng)時,根據(jù)雙曲線離心率公式,即可求出結(jié)果.【詳解】因為是兩個數(shù)1,9的等比中項,所以,所以,當(dāng)時,圓錐曲線,其離心率為;當(dāng)時,圓錐曲線,其離心率為;綜上,圓錐曲線的離心率為或.故選:A.12、C【解析】焦點在軸上的是C和D,漸近線方程為,故選C考點:1.雙曲線的標(biāo)準(zhǔn)方程;2.雙曲線的簡單幾何性質(zhì)二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求導(dǎo),求出切線斜率,進(jìn)而寫出切線方程.【詳解】,則,故切斜方程為:,即故答案為:14、【解析】將展開圖還原成正方體,通過建系利用空間向量的知識求解.【詳解】將展開圖還原成正方體,以A為原點,建立如圖所示的空間直角坐標(biāo)系,,,,,.則.設(shè)平面的法向量為,由令,則,所以直線與平面所成角的正弦值為.故答案為:15、50【解析】利用頻率分布直方圖的性質(zhì)求解即可.【詳解】第五組的頻率為,第一組所占的頻率為,則隨機抽取400名學(xué)生視力在范圍內(nèi)的學(xué)生約有人.故答案為:50.16、【解析】根據(jù)雙曲線方程直接可得離心率.【詳解】由,可得,,故,離心率,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)已知焦點弦三角形的周長,以及離心率求橢圓方程,待定系數(shù)直接求解即可.(2)第一步設(shè)點設(shè)直線,第二步聯(lián)立方程韋達(dá)定理,第三步條件轉(zhuǎn)化,利用三角形等面積法,列方程,第四步利用韋達(dá)定理進(jìn)行轉(zhuǎn)化,計算即可.【小問1詳解】因為的周長為,的離心率為,所以,,所以,,又,所以橢圓的方程為.【小問2詳解】方法一:,,的面積為,的面積為,則,得,①設(shè),與橢圓C方程聯(lián)立,消去得,由韋達(dá)定理得,.令,②則,可得當(dāng)時,當(dāng)時,所以,又解得③由①②③得,解得.所以實數(shù)的取值范圍是.方法二:同方法一可得的面積為,的面積為,則,得,①設(shè),與橢圓C方程聯(lián)立,消去得,由韋達(dá)定理得,.所以因為,所以解得②由①②解得.所以實數(shù)的取值范圍是.18、(1)增區(qū)間為(2),【解析】(1)求導(dǎo),由判別式可判斷導(dǎo)數(shù)符號,然后可得;(2)求導(dǎo),求導(dǎo)數(shù)零點,比較函數(shù)極值和端點函數(shù)值,結(jié)合單調(diào)性可得.【小問1詳解】因為,所以,,因為,所以恒成立所以的增區(qū)間為.【小問2詳解】當(dāng)時,,令,解得,當(dāng)時,,當(dāng)時,,當(dāng)時,所以,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.因為,所以在區(qū)間上的最大值,最小值為19、(1)(2)證明見解析(3)【解析】(1)求導(dǎo),根據(jù)導(dǎo)數(shù)的幾何意義,令x=1處的切線的斜率等1,結(jié)合,即可求得a和b的值;(2)利用(1)的結(jié)論,構(gòu)造函數(shù),求求導(dǎo)數(shù),判斷單調(diào)性,求出最小值即可證明;(3)根據(jù)條件構(gòu)造函數(shù),求出其導(dǎo)數(shù),分類討論導(dǎo)數(shù)的值的情況,根據(jù)單調(diào)性,判斷函數(shù)的最小值情況,即可求得答案.【小問1詳解】由題意知:,因為曲線在點(1,0)處的切線方程為,故,即;【小問2詳解】證明:由(1)知:,令,則,當(dāng)時,,單調(diào)遞減,當(dāng)時,,單調(diào)遞增,所以當(dāng)時,取得極小值,也即最小值,最小值為,故,即成立;【小問3詳解】當(dāng),即,(),設(shè),(),則,當(dāng)時,由得,此時,此時在時單調(diào)遞增,,適合題意;當(dāng)時,,此時在時單調(diào)遞增,,適合題意;當(dāng)時,,此時,此時在時單調(diào)遞增,,適合題意;當(dāng)時,,此時在內(nèi),,在內(nèi),,故,顯然時,,不滿足當(dāng)恒成立,綜上述:.20、(1)(2)【解析】(1)(2)直接由條件解出即可得到雙曲線方程.【小問1詳解】由題意有,解得:,則雙曲線的標(biāo)準(zhǔn)方程為:【小問2詳解】由題意有,解得:,則雙曲線的標(biāo)準(zhǔn)方程為:21、(1)證明見解析;(2)存在,.【解析】(1)建立空間直角坐標(biāo)系,求出平面的法向量和直線的單位向量,從而可證明線面平行.(2)令,,設(shè),求出,結(jié)合已知條件可列出關(guān)于的方程,從而可求出的值.【詳解】證明:過作于點,則,以為原點,,,所在的直線分別為,,軸建立如圖所示的空間直角坐標(biāo)系則,,,
,,,∵為的中點.∴.則,,,設(shè)平面的法向量為,則令,則,,∴.∴,即,又平面.∴平面解:令,,設(shè),∴.∴,∴
.由知,平面的法向量為.∵直線與平面所成角的正弦值為,∴,化簡得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 代理記賬服務(wù)合同樣本
- 2024山地林權(quán)承包合同范本
- 工程質(zhì)量責(zé)任合同范本閱讀
- 常見勞務(wù)協(xié)議書樣本
- 2024年度品牌授權(quán)合同標(biāo)的及相關(guān)服務(wù)說明
- 海洋貨品運輸合同范本
- 2024個人機動車買賣合同模板
- 房屋買賣違約賠償協(xié)議
- 2024合同交底的具體步驟合同交底范本條文2
- 基礎(chǔ)版員工勞動合同書樣本
- 回收PET塑料資源化利用及產(chǎn)業(yè)化進(jìn)展研究
- 《住院患者身體約束的護理》團體標(biāo)準(zhǔn)解讀課件
- 英語-浙江省湖州、衢州、麗水2024年11月三地市高三教學(xué)質(zhì)量檢測試卷試題和答案
- 勞動技術(shù)教案
- 廣東省深圳市2023-2024學(xué)年高一上學(xué)期生物期中試卷(含答案)
- 第七章 立體幾何與空間向量綜合測試卷(新高考專用)(學(xué)生版) 2025年高考數(shù)學(xué)一輪復(fù)習(xí)專練(新高考專用)
- 2024年浙江省衢州市營商環(huán)境建設(shè)辦公室招聘政府雇員17人高頻難、易錯點500題模擬試題附帶答案詳解
- 中國急性缺血性卒中診治指南(2023版)
- 福建省殘疾人崗位精英職業(yè)技能競賽(美甲師)參考試題及答案
- 在線學(xué)習(xí)新變革課件 2024-2025學(xué)年人教版(2024)初中信息技術(shù)七年級全一冊
- 航空器系統(tǒng)與動力裝置學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
評論
0/150
提交評論