版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省深圳市耀華實驗學(xué)校2024屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若函數(shù)有3個零點,則實數(shù)的取值范圍是()A. B.C. D.2.已知函數(shù),則函數(shù)在區(qū)間上的最小值為()A. B.C. D.3.如圖,在直三棱柱中,,,E是的中點,則直線BC與平面所成角的正弦值為()A. B.C. D.4.已知數(shù)列滿足,則()A.2 B.C.1 D.5.下列函數(shù)中,以為最小正周期,且在上單調(diào)遞減的為()A. B.C. D.6.已知斜三棱柱所有棱長均為2,,點、滿足,,則()A. B.C.2 D.7.函數(shù)f(x)=-1+lnx,對?x0,f(x)≥0成立,則實數(shù)a的取值范圍是()A(-∞,2] B.[2,+∞)C.(-∞,1] D.[1,+∞)8.函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則()A.為的極大值點B.為的極大值點C.為的極大值點D.為的極小值點9.函數(shù)的導(dǎo)函數(shù)為,對任意,都有成立,若,則滿足不等式的的取值范圍是()A. B.C. D.10.如圖,P為圓錐的頂點,O是圓錐底面的圓心,圓錐PO的軸截面PAE是邊長為2的等邊三角形,是底面圓的內(nèi)接正三角形.則()A. B.C. D.11.某地為應(yīng)對極端天氣搶險救災(zāi),需調(diào)用A,B兩種卡車,其中A型卡車x輛,B型卡車y輛,以備不時之需,若x和y滿足約束條件則最多需調(diào)用卡車的數(shù)量為()A.7 B.9C.13 D.1412.雙曲線的漸近線方程為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平行四邊形內(nèi)接于橢圓,且的斜率之積為,則橢圓的離心率為________14.已知向量是直線l的一個方向向量,向量是平面的一個法向量,若直線平面,則實數(shù)m的值為______15.希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點A,B的距離之比為定值λ(λ≠1)的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.已知在平面直角坐標系xOy中,A(-2,1),B(-2,4),點P是滿足的阿氏圓上的任一點,則該阿氏圓的方程為___________________;若點Q為拋物線E:y2=4x上的動點,Q在直線x=-1上的射影為H,則的最小值為___________.16.隨機變量X的取值為0,1,2,若,,則_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面為梯形,底面,,,,.(1)求證:平面平面;(2)設(shè)為上一點,滿足,若直線與平面所成的角為,求二面角的余弦值.18.(12分)如圖所示,圓錐的高,底面圓的半徑為,延長直徑到點,使得,分別過點、作底面圓的切線,兩切線相交于點,點是切線與圓的切點(1)證明:平面;(2)若平面與平面所成銳二面角的余弦值為,求該圓錐的體積19.(12分)已知圓C1圓心為坐標原點,且與直線相切(1)求圓C1的標準方程;(2)若直線l過點M(1,2),直線l被圓C1所截得的弦長為,求直線l的方程20.(12分)過點作圓的兩條切線,切點分別為A,B;(1)求直線AB的方程;(2)若M為圓上的一點,求面積的最大值21.(12分)已知橢圓的離心率為,且點在C上.(1)求橢圓C的標準方程;(2)設(shè),為橢圓C的左,右焦點,過右焦點的直線l交橢圓C于A,B兩點,若內(nèi)切圓的半徑為,求直線l的方程.22.(10分)如圖,在四棱錐中,平面,底面為菱形,且,,分別為,的中點(Ⅰ)證明:平面;(Ⅱ)點在棱上,且,證明:平面
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】構(gòu)造,通過求導(dǎo),研究函數(shù)的單調(diào)性及極值,最值,畫出函數(shù)圖象,數(shù)形結(jié)合求出實數(shù)的取值范圍.【詳解】令,即,令,當(dāng)時,,,令得:或,結(jié)合,所以,令得:,結(jié)合得:,所以在處取得極大值,也是最大值,,當(dāng)時,,且,當(dāng)時,,則恒成立,單調(diào)遞增,且當(dāng)時,,當(dāng)時,,畫出的圖象,如下圖:要想有3個零點,則故選:B2、B【解析】根據(jù)已知條件求得以及,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,即可求得函數(shù)在區(qū)間上的最小值.【詳解】因為,故可得,則,又,令,解得,令,解得,故在單調(diào)遞減,在單調(diào)遞增,又,故在區(qū)間上的最小值為.故選:.3、D【解析】以,,的方向分別為x軸、y軸、z軸的正方向,建立空間直角坐標系,利用向量法即可求出答案.【詳解】解:由題意知,CA,CB,CC1兩兩垂直,以,,的方向分別為x軸、y軸、z軸的正方向,建立如圖所示的空間直角坐標系,則,,,,設(shè)平面的法向量為,則令,得.因為,所以,故直線BC與平面所成角的正弦值為.故選:D.4、D【解析】首先得到數(shù)列的周期,再計算的值.【詳解】由條件,可知,兩式相加可得,即,所以數(shù)列是以周期為的周期數(shù)列,.故選:D5、B【解析】A.利用正切函數(shù)的性質(zhì)判斷;B.作出的圖象判斷;C.作出的圖象判斷;D.作出的圖象判斷.【詳解】A.是以為最小正周期,在上單調(diào)遞增,故錯誤;B.如圖所示:,由圖象知:函數(shù)是以為最小正周期,在上單調(diào)遞減,故正確;C.如圖所示:,由圖象知:是以為最小正周期,在上單調(diào)遞增,故錯誤;D.如圖所示:,由圖象知:是以為最小正周期,在上單調(diào)遞增,故錯誤;故選:B6、D【解析】以向量為基底向量,則,根據(jù)條件由向量的數(shù)量積的運算性質(zhì),兩邊平方可得答案.【詳解】以向量為基底向量,所以所以故選:D7、B【解析】由導(dǎo)數(shù)求得的最小值,由最小值非負可得的范圍【詳解】定義域是,,若,則在上恒成立,單調(diào)遞增,,不合題意;若,則時,,遞減,時,,遞增,所以時,取得極小值也是最小值,由題意,解得故選:B8、A【解析】由導(dǎo)函數(shù)的圖像可得函數(shù)的單調(diào)區(qū)間,從而可求得函數(shù)的極值【詳解】由的圖像可知,在和上單調(diào)遞減,在和上單調(diào)遞增,所以為的極大值點,和為的極小值點,不是函數(shù)的極值點,故選:A9、C【解析】構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,將所求不等式變形為,結(jié)合函數(shù)的單調(diào)性即可得解.【詳解】對任意,都有成立,即令,則,所以函數(shù)上單調(diào)遞增不等式即,即因為,所以所以,,解得,所以不等式的解集為故選:C.10、B【解析】先求出,再利用向量的線性運算和數(shù)量積計算求解.【詳解】解:由題得,,故選:B11、B【解析】畫出約束條件的可行域,利用目標函數(shù)的幾何意義即可求解【詳解】設(shè)調(diào)用卡車的數(shù)量為z,則,其中x和y滿足約束條件,作出可行域如圖所示:當(dāng)目標函數(shù)經(jīng)過時,縱截距最大,最大.故選:B12、A【解析】根據(jù)雙曲線的漸近線方程知,,故選A.二、填空題:本題共4小題,每小題5分,共20分。13、##0.5【解析】根據(jù)對稱性設(shè),,,根據(jù)得到,再求離心率即可.【詳解】由對稱性,,關(guān)于原點對稱,設(shè),,,,故.故答案為:14、-2【解析】由已知可得,即,計算即可得出結(jié)果.【詳解】因為是直線的一個方向向量,是平面的一個法向量,且直線平面,所以,所以,解得.故答案為:-2.15、①.②.【解析】(1)利用直譯法直接求出P點的軌跡(2)先利用阿氏圓的定義將轉(zhuǎn)化為P點到另一個定點的距離,然后結(jié)合拋物線的定義容易求得的最小值【詳解】設(shè)P(x,y),由阿氏圓的定義可得即化簡得則設(shè)則由拋物線的定義可得當(dāng)且僅當(dāng)四點共線時取等號,的最小值為故答案為:【點睛】本題考查了拋物線的定義及幾何性質(zhì),同時考查了阿氏圓定義的應(yīng)用.還考查了學(xué)生利用轉(zhuǎn)化思想、方程思想等思想方法解題的能力.難度較大16、##0.4【解析】設(shè)出概率,利用期望求出相應(yīng)的概率,進而利用求方差公式進行求解.【詳解】設(shè),則,從而,解得:,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)由三角形的邊角關(guān)系可證,再由底面,可得.即可證明底面,由面面垂直的判定定理得證.(2)以點為坐標原點,,,分別為,,軸建立空間坐標系,利用空間向量法求出二面角的余弦值.【詳解】解析:(1)證明:由,,,,,所以,又,∴,∴,∴,因為底面,底面,∴.因為,底面,底面,底面,底面,所以面面.(2)由(1)可知為與平面所成的角,∴,∴,,由及,可得,,以點為坐標原點,,,分別為,,軸建立空間坐標系,則,,,,設(shè)平面的法向量為,則,,取,設(shè)平面的法向量為,則,,取,所以,所以二面角余弦值為.【點睛】本題考查面面垂直的判定,線面垂直的性質(zhì),利用空間向量法求二面角的余弦值,屬于中檔題.18、(1)證明見解析;(2).【解析】(1)由線面垂直、切線的性質(zhì)可得、,再根據(jù)線面垂直的判定即可證結(jié)論.(2)若,構(gòu)建為原點,、、為x、y、z軸的空間直角坐標系,求面、面的法向量,利用空間向量夾角的坐標表示及其對應(yīng)的余弦值求R,最后由圓錐的體積公式求體積.【小問1詳解】由題設(shè),底面圓,又是切線與圓的切點,∴底面圓,則,且,而,∴平面.【小問2詳解】由題設(shè),若,可構(gòu)建為原點,、、為x、y、z軸的空間直角坐標系,又,可得,∴,,,有,,若是面的一個法向量,則,令,則,又面的一個法向量為,∴,可得,∴該圓錐的體積19、(1)(2)或【解析】(1)由圓心到直線的距離求得半徑,可得圓C1的標準方程;(2)當(dāng)直線的斜率不存在時,求得直線l被圓C1所截得的弦長為,符合題意;當(dāng)直線l的斜率存在時,設(shè)出直線方程,由已知弦長可得圓心到直線的距離,再由點到直線的距離公式列式求k,則直線方程可求【小問1詳解】∵原點O到直線的距離為,∴圓C1的標準方程為;【小問2詳解】當(dāng)直線l的斜率不存在時,直線方程為x=1,代入,得,即直線l被圓C1所截得的弦長為,符合題意;當(dāng)直線l的斜率存在時,設(shè)直線方程為,即∵直線l被圓C1所截得的弦長為,圓的半徑為2,則圓心到直線l的距離,解得∴直線l的方程為,即綜上,直線l的方程為或20、(1)(2)【解析】(1)求出以為直徑的圓的方程,結(jié)合已知圓的方程,將兩圓方程相減可求得兩圓公共弦所在直線方程;(2)求出圓上的點M到直線AB的距離的最大值,求出,利用三角形面積公式求得答案.【小問1詳解】圓的圓心坐標為,半徑為1,則的中點坐標為,,以為圓心,為直徑的圓的方程為,由,得①,由,得②,①②得:直線的方程為;【小問2詳解】圓心到直線的距離為故圓上的點M到直線的距離的最大值為,而,故面積的最大值為.21、(1)(2)或.【解析】(1)根據(jù)離心率可得的關(guān)系,再將的坐標代入方程后可求,從而可得橢圓的方程.(2)設(shè)直線的方程為,,結(jié)合內(nèi)切圓的半徑為可得,聯(lián)立直線方程和橢圓方程,消元后結(jié)合韋達定理可得關(guān)于的方程,求出其解后可得直線方程.【小問1詳解】因為橢圓的離心率為,故可設(shè),故橢圓方程為,代入得,故,故橢圓方程為:.【小問2詳解】的周長為,故.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版工程機械設(shè)備租賃與技術(shù)創(chuàng)新服務(wù)合同3篇
- 二零二五版護林員勞動合同書編制指南3篇
- 二零二五版按揭購房合同:智能家居系統(tǒng)智能家居系統(tǒng)節(jié)能改造合同3篇
- 二零二五年度游戲公司代運營及運營支持合同3篇
- 二零二五版包雪服務(wù)項目風(fēng)險評估與預(yù)案合同3篇
- 二零二五年度餐飲配送企業(yè)食品安全責(zé)任追究合同3篇
- 二零二五版海洋工程高低壓配電系統(tǒng)安裝合同2篇
- 二零二五版小微企業(yè)貸款合同與信用增級服務(wù)協(xié)議3篇
- 二零二五年度海洋工程設(shè)備采購合同15篇
- 二零二五年黃豆種植戶風(fēng)險管理采購合同3篇
- MT/T 199-1996煤礦用液壓鉆車通用技術(shù)條件
- GB/T 6144-1985合成切削液
- GB/T 10357.1-2013家具力學(xué)性能試驗第1部分:桌類強度和耐久性
- 第三方在線糾紛解決機制(ODR)述評,國際商法論文
- 公寓de全人物攻略本為個人愛好而制成如需轉(zhuǎn)載注明信息
- 第5章-群體-團隊溝通-管理溝通
- 腎臟病飲食依從行為量表(RABQ)附有答案
- 深基坑-安全教育課件
- 園林施工管理大型園林集團南部區(qū)域養(yǎng)護標準圖例
- 排水許可申請表
- 低血糖的觀察和護理課件
評論
0/150
提交評論