黑龍江哈爾濱市第三中學2023-2024學年高二數(shù)學第一學期期末調(diào)研模擬試題含解析_第1頁
黑龍江哈爾濱市第三中學2023-2024學年高二數(shù)學第一學期期末調(diào)研模擬試題含解析_第2頁
黑龍江哈爾濱市第三中學2023-2024學年高二數(shù)學第一學期期末調(diào)研模擬試題含解析_第3頁
黑龍江哈爾濱市第三中學2023-2024學年高二數(shù)學第一學期期末調(diào)研模擬試題含解析_第4頁
黑龍江哈爾濱市第三中學2023-2024學年高二數(shù)學第一學期期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

黑龍江哈爾濱市第三中學2023-2024學年高二數(shù)學第一學期期末調(diào)研模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線是雙曲線的一條漸近線,,分別是雙曲線左、右焦點,P是雙曲線上一點,且,則()A.2 B.6C.8 D.102.已知f(x)=x3+(a-1)x2+x+1沒有極值,則實數(shù)a的取值范圍是()A.[0,1] B.(-∞,0]∪[1,+∞)C.[0,2] D.(-∞,0]∪[2,+∞)3.等差數(shù)列中,,,則()A.6 B.7C.8 D.94.若動點在方程所表示的曲線上,則以下結(jié)論正確的是()①曲線關(guān)于原點成中心對稱圖形;②動點到坐標原點的距離的取值范圍為;③動點與點的最小距離為;④動點與點的連線斜率的取值范圍是.A.①② B.①②③C.③④ D.①②④5.和的等差中項與等比中項分別為()A., B.2,C., D.1,6.設(shè)圓:和圓:交于A,B兩點,則線段AB所在直線的方程為()A. B.C. D.7.已知A(3,2),點F為拋物線的焦點,點P在拋物線上移動,為使取得最小值,則點P的坐標為()A.(0,0) B.(2,2)C. D.8.若直線與平行,則m的值為()A.-2 B.-1或-2C.1或-2 D.19.如圖所示,為了測量A,B處島嶼的距離,小張在D處觀測,測得A,B分別在D處的北偏西、北偏東方向,再往正東方向行駛10海里至C處,觀測B在C處的正北方向,A在C處的北偏西方向,則A,B兩處島嶼間的距離為()海里.A. B.C. D.1010.如圖,直三棱柱的所有棱長均相等,P是側(cè)面內(nèi)一點,設(shè),若P到平面的距離為2d,則點P的軌跡是()A.圓的一部分 B.橢圓的一部分C.拋物線的一部分 D.雙曲線的一部分11.某中學高一年級有200名學生,高二年級有260名學生,高三年級有340名學生,為了了解該校高中學生完成作業(yè)情況,現(xiàn)用分層抽樣的方法抽取一個容量為40的樣本,則高二年級抽取的人數(shù)為()A.10 B.13C.17 D.2612.已知函數(shù),,當時,不等式恒成立,則實數(shù)的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則曲線在點處的切線方程為______.14.總體由編號為01,02,…,30的30個個體組成.選取方法是從下面隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為____________.66065747173407275017362523611665118918331119921970058102057864532345647615.已知數(shù)列滿足,,則使得成立的n的最小值為__________.16.中國的西氣東輸工程把西部地區(qū)的資源優(yōu)勢變?yōu)榻?jīng)濟優(yōu)勢,實現(xiàn)了天然氣能源需求與供給的東西部銜接,工程建設(shè)也加快了西部及沿線地區(qū)的經(jīng)濟發(fā)展.輸氣管道工程建設(shè)中,某段管道鋪設(shè)要經(jīng)過一處峽谷,峽谷內(nèi)恰好有一處直角拐角,水平橫向移動輸氣管經(jīng)過此拐角,從寬為的峽谷拐入寬為的峽谷,如圖所示,位于峽谷懸崖壁上兩點,的連線恰好經(jīng)過拐角內(nèi)側(cè)頂點(點,,在同一水平面內(nèi)),設(shè)與較寬側(cè)峽谷懸崖壁所成的角為,則的長為______(用表示).要使輸氣管順利通過拐角,其長度不能低于______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點為F,為拋物線C上的點,且.(1)求拋物線C的方程;(2)若直線與拋物線C相交于A,B兩點,求弦長.18.(12分)若等比數(shù)列的各項為正,前項和為,且,.(1)求數(shù)列的通項公式;(2)若是以1為首項,1為公差的等差數(shù)列,求數(shù)列的前項和.19.(12分)設(shè)函數(shù),其中是自然對數(shù)的底數(shù),.(1)若,求的最小值;(2)若,證明:恒成立.20.(12分)如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AD//BC,AB=BC=CD=1,AD=2,直線BC與平面PCD所成角的正弦值為.(1)求證:平面PCD⊥平面PAC;(2)求平面PAB與平面PCD所成銳二面角的余弦值.21.(12分)已知空間中三點,,,設(shè),(1)求向量與向量的夾角的余弦值;(2)若與互相垂直,求實數(shù)的值22.(10分)已知橢圓的左、右焦點分別為,,且橢圓過點,離心率,為坐標原點,過且不平行于坐標軸的動直線與有兩個交點,,線段的中點為.(1)求的標準方程;(2)記直線斜率為,直線的斜率為,證明:為定值;(3)軸上是否存在點,使得為等邊三角形?若存在,求出點的坐標;若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)漸近線可求出a,再由雙曲線定義可求解.【詳解】因為直線是雙曲線的一條漸近線,所以,,又或,或(舍去),故選:C2、C【解析】求導(dǎo)得,再解不等式即得解.【詳解】由得,根據(jù)題意得,解得故選:C3、C【解析】由等差數(shù)列的基本量法先求得公差,然后可得【詳解】設(shè)數(shù)列的公差為,則,,所以故選:C4、A【解析】將原方程等價變形為,將方程中的換為,換為,方程不變,可判斷①;利用兩點間的距離公式,結(jié)合二次函數(shù)知識可判斷②和③;取特殊點可判斷④.【詳解】因為等價于,即,對于①,將方程中的換為,換為,方程不變,所以曲線關(guān)于原點成中心對稱圖形,故①正確;對于②,設(shè),則動點到坐標原點的距離,因為,所以,故②正確;對于③,設(shè),動點與點的距離為,因為函數(shù)在上遞減,所以當時,函數(shù)取得最小值,從而取得最小值,故③不正確;對于④,當時,因為,所以,故④不正確.綜上所述:結(jié)論正確的是:①②.故選:A5、C【解析】根據(jù)等差中項和等比中項的概念分別求值即可.【詳解】和的等差中項為,和的等比中項為.故選:C.6、A【解析】將兩圓的方程相減,即可求兩圓相交弦所在直線的方程.【詳解】設(shè),因為圓:①和圓:②交于A,B兩點所以由①-②得:,即,故坐標滿足方程,又過AB的直線唯一確定,即直線的方程為.故選:A7、B【解析】設(shè)點P到準線的距離為,根據(jù)拋物線的定義可知,即可根據(jù)點到直線的距離最短求出【詳解】如圖所示:設(shè)點P到準線的距離為,準線方程為,所以,當且僅當點為與拋物線的交點時,取得最小值,此時點P的坐標為故選:B8、C【解析】利用兩直線平行的判定有,即可求參數(shù)值.【詳解】由題設(shè),,可得或.經(jīng)驗證不重合,滿足題意,故選:C.9、C【解析】分別在和中,求得的長度,再在中,利用余弦定理,即可求解.【詳解】如圖所示,可得,所以,在中,可得,在直角中,因為,所以,在中,由余弦定理可得,所以.故選:C.10、B【解析】取的中點,得出平面,作,在直角中,求得,以為原點,為軸,為軸建立平面直角坐標系,求得點的軌跡方程,即可求解.【詳解】如圖所示,取的中點,連接,得到平行于平面且過點的平面,如圖(1)(2)所示,作,則P1與E重合,則,在直角中,可得,在圖(3)中,設(shè)直三棱柱的所有棱長均為,且,以為原點,為軸,為軸建立平面直角坐標系,則,所以,即所以,整理得,所以點P的軌跡是橢圓的一部分.故選:B.11、B【解析】計算出抽樣比可得答案.【詳解】該校高中學生共有名,所以高二年級抽取的人數(shù)名.故選:B.12、C【解析】由題意得出,構(gòu)造函數(shù),可知函數(shù)在區(qū)間上單調(diào)遞增,可得出對任意的恒成立,利用參變量分離法可得出,利用導(dǎo)數(shù)求得函數(shù)在區(qū)間上的最大值,由此可求得實數(shù)的取值范圍.【詳解】函數(shù)的定義域為,當時,恒成立,即,構(gòu)造函數(shù),則,所以,函數(shù)在區(qū)間上為增函數(shù),則對任意的恒成立,,令,其中,則.,所以函數(shù)在上單調(diào)遞減;又,所以.因此,實數(shù)的取值范圍是.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求函數(shù)的導(dǎo)數(shù),再利用導(dǎo)數(shù)的幾何意義求函數(shù)在處的切線方程.【詳解】,,,所以曲線在點處的切線方程為,即.故答案為:【點睛】本題考查導(dǎo)數(shù)的幾何意義,重點考查計算能力,屬于基礎(chǔ)題型.14、23【解析】根據(jù)隨機表,由編號規(guī)則及讀表位置列舉出前5個符合要求的編號,即可得答案.【詳解】由題設(shè),依次得到的數(shù)字為57,47,17,34,07,27,50,17,36,25,23,……根據(jù)編號規(guī)則符合要求的依次為17,07,27,25,23,……所以第5個個體編號為23.故答案為:23.15、11【解析】由題設(shè)可得,結(jié)合等比數(shù)列的定義知從第二項開始是公比為2的等比數(shù)列,進而寫出的通項公式,即可求使成立的最小值n.【詳解】因為,所以,兩式相除得,整理得.因為,故從第二項開始是等比數(shù)列,且公比為2,因為,則,所以,則,由得:,故故答案為:11.16、①.②.【解析】(1)利用三角關(guān)系分別利用表示、即可求解;(2)利用導(dǎo)數(shù)求最小值的方法即可求解.【詳解】過點分別作,,垂足分別為,,則,在中,,則,同理可得,所以.令,則,令,,得,即,由,解得,當時,;當時,,所以當時,取得極小值,也是最小值,則,故輸氣管的長度不能低于m.故答案為:;.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)根據(jù)拋物線定義可得,從而得到拋物線C的方程;(2)設(shè),聯(lián)立拋物線方程,消去,可得的方程,運用韋達定理和弦長公式,計算可得所求值【詳解】(1),所以,即拋物線C的方程.(2)設(shè),由得所以,所以.【點睛】方法點睛:計算拋物線弦長方法,(1)若直線過拋物線的焦點,則弦長|AB|=x1+x2+p=(α為弦AB的傾斜角)(2)若直線不過拋物線的焦點,則用|AB|=·|x1-x2|求解18、(1)(2)【解析】(1)設(shè)公比為,則由已知可得,求出公比,再求出首項,從而可求出數(shù)列的通項公式;(2)由已知可得,而,所以,然后利用錯位相減法可求得結(jié)果【小問1詳解】設(shè)各項為正的等比數(shù)列的公比為,,,則,,,即,解得或(舍去),所以,所以數(shù)列的通項公式為.【小問2詳解】因為是以1為首項,1為公差的等差數(shù)列,所以.由(1)知,所以.所以①在①的等式兩邊同乘以,得②由①②等式兩邊相減,得,所以數(shù)列的前項和.19、(1)(2)證明見解析【解析】(1)當時,,求出,可得答案;(2)設(shè),,,,,設(shè),求出利用單調(diào)性可得答案.【小問1詳解】當時,,則,所以單調(diào)遞增,又,當時,,單調(diào)遞減,當時,,單調(diào)遞增,所以.【小問2詳解】設(shè),若,則,若,則,設(shè),則,所以單調(diào)遞增,又,當時,,上單調(diào)遞減,當時,,單調(diào)遞增,所以,所以,綜上,恒成立.【點睛】本題考查了求函數(shù)值域或最值的問題,一般都需要通過導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值來處理,特別的要根據(jù)所求問題,適時構(gòu)造恰當?shù)暮瘮?shù),再利用所構(gòu)造函數(shù)的單調(diào)性、最值解決問題是常用方法,考查了學生分析問題、解決問題的能力.20、(1)證明見解析(2)【解析】(1)取的中點,連接,證明,由線面垂直的判定定理可證明平面,再利用面面垂直的判定定理可證得結(jié)論,(2)過點作于,以為原點,建立空間直角坐標系,如圖所示,設(shè),先根據(jù)直線BC與平面PCD所成角的正弦值為,求出,然后再求出平面PAB的法向量,利用向量的夾角公式可求得結(jié)果【小問1詳解】證明:取的中點,連接,因為AD//BC,AB=BC=CD=1,AD=2,所以,∥,所以四邊形為平行四邊形,所以,所以,因為平面,平面,所以,因為,所以平面,因為平面,所以平面平面,【小問2詳解】過點作于,以為原點,建立空間直角坐標系,如圖所示,在等腰梯形中,AD//BC,AB=BC=CD=1,AD=2,則,所以設(shè)因為平面,所以所以,設(shè)平面的法向量為,則,令,則,因為直線BC與平面PCD所成角的正弦值為,所以,解得,所以,,設(shè)平面的法向量為,因為,所以,令,則,所以,所以平面PAB與平面PCD所成銳二面角的余弦值為21、(1);(2)或.【解析】(1)坐標表示出、,利用向量夾角的坐標表示求夾角余弦值;(2)坐標表示出k+、k-2,利用向量垂直的坐標表示列方程求的值.【詳解】由題設(shè),=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夾角余弦值為.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),則(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0,解得k=-或2.22、(1);(2)證明

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論