版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省伊春市南岔區(qū)伊春二中2023-2024學年高二數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過拋物線C:的準線上任意一點作拋物線的切線,切點為,若在軸上存在定點,使得恒成立,則點的坐標為()A. B.C. D.2.圓關于直線對稱,則的最小值是()A. B.C. D.3.已知雙曲線C:的漸近線方程是,則m=()A.3 B.6C.9 D.4.已知實數(shù)成等比數(shù)列,則圓錐曲線的離心率為()A. B.2C.或2 D.或5.已知命題:,;命題:在中,若,則,則下列命題為真命題的是()A. B.C. D.6.下列結論中正確的個數(shù)為()①,;②;③A.0 B.1C.2 D.37.如圖,A,B,C三點不共線,O為平面ABC外一點,且平面ABC中的小方格均為單位正方形,,,則()A.1 B.C.2 D.8.若存在過點(0,-2)的直線與曲線和曲線都相切,則實數(shù)a的值是()A.2 B.1C.0 D.-29.用數(shù)學歸納法證明“”時,由假設證明時,不等式左邊需增加的項數(shù)為()A. B.C. D.10.已知,為橢圓的左、右焦點,P為橢圓上一點,若,則P點的橫坐標為()A. B.C.4 D.911.在空間直角坐標系中,若,,則點B的坐標為()A.(3,1,﹣2) B.(-3,1,2)C.(-3,1,-2) D.(3,-1,2)12.圓上到直線的距離為的點共有A.個 B.個C.個 D.個二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,并且、共線且方向相同,則______.14.半徑為的球的體積為_________15.已知為平面的一個法向量,為直線的方向向量.若,則__________.16.如圖的形狀出現(xiàn)在南宋數(shù)學家楊輝所著的《詳解九章算法·商功》中,后人稱為“三角垛”.“三角垛”的最上面一層有1個球,第二層有3個球,第三層有6個球…….設各層球數(shù)構成一個數(shù)列,其中,,,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,過點且傾斜角為的直線與曲線(為參數(shù))交于兩點.(1)將曲線的參數(shù)方程轉(zhuǎn)化為普通方程;(2)求的長.18.(12分)已知函數(shù),.(1)當時,求曲線在點處的切線方程;(2)若在區(qū)間上有唯一的零點.(ⅰ)求的取值范圍;(ⅱ)證明:.19.(12分)已知雙曲線:的兩條漸近線所成的銳角為且點是上一點(1)求雙曲線的標準方程;(2)若過點的直線與交于,兩點,點能否為線段的中點?并說明理由20.(12分)已知動點M到點F(0,)的距離與它到直線的距離相等(1)求動點M的軌跡C的方程;(2)過點P(,-1)作C的兩條切線PA,PB,切點分別為A,B,求直線AB的方程21.(12分)已知點,,雙曲線C上除頂點外任一點滿足直線RM與QM的斜率之積為4.(1)求C方程;(2)若直線l過C上的一點P,且與C的漸近線相交于A,B兩點,點A,B分別位于第一、第二象限,,求的最小值.22.(10分)已知數(shù)列滿足(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前n項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設切點,點,聯(lián)立直線的方程和拋物線C的準線方程可得,將問題轉(zhuǎn)化為對任意點恒成立,可得,解出,從而求出答案【詳解】設切點,點由題意,拋物線C的準線,且由,得,則直線的方程為,即,聯(lián)立令,得由題意知,對任意點恒成立,也就是對任意點恒成立因為,,則,即對任意實數(shù)恒成立,所以,即,所以,故選:D【點睛】一般表示拋物線的切線方程時可將拋物線方程轉(zhuǎn)化為函數(shù)解析式,可利用導數(shù)的幾何意義求解切線斜率,再代入計算.2、C【解析】先求出圓的圓心坐標,根據(jù)條件可得直線過圓心,從而可得,然后由,展開利用均值不等式可得答案.【詳解】由圓可得標準方程為,因為圓關于直線對稱,該直線經(jīng)過圓心,即,,,當且僅當,即時取等號,故選:C.3、C【解析】根據(jù)雙曲線的漸近線求得的值.【詳解】依題意可知,雙曲線的漸近線為,所以.故選:C4、C【解析】根據(jù)成等比數(shù)列求得,再根據(jù)離心率計算公式即可求得結果.【詳解】因為實數(shù)成等比數(shù)列,故可得,解得或;當時,表示焦點在軸上的橢圓,此時;當時,表示焦點在軸上的雙曲線,此時.故選:C.5、C【解析】分別求得的真假性,從而確定正確答案.【詳解】對于,由于,所以為假命題,為真命題.對于,在三角形中,,由正弦定理得,所以為真命題,為假命題.所以為真命題,、、為假命題.故選:C6、C【解析】構造函數(shù)利用導數(shù)說明函數(shù)的單調(diào)性,即可判斷大小,從而得解;【詳解】解:令,,則,所以在上單調(diào)遞增,所以,即,即,,故①正確;令,,則,所以當時,,當時,,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即恒成立,所以,故②正確;令,,當時,當時,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以,當且僅當時取等號,故③錯誤;故選:C7、B【解析】根據(jù)向量的線性運算,將向量表示為,再根據(jù)向量的數(shù)量積的運算進行計算可得答案,【詳解】因為,所以=,故選:B.8、A【解析】在兩曲線上設切點,得到切線,又因為(0,-2)在兩條切線上,列方程即可.【詳解】的導函數(shù)為,的導函數(shù)為,若直線與和的切點分別為(,),,∴過(0,-2)的直線為、,則有,可得故選:A.9、C【解析】當成立,寫出左側的表達式,當時,寫出對應的關系式,觀察計算即可【詳解】從到成立時,左邊增加的項為,因此增加的項數(shù)是,故選:C10、B【解析】設,,根據(jù)向量的數(shù)量積得到,與橢圓方程聯(lián)立,即可得到答案;【詳解】設,,,與橢圓聯(lián)立,解得:,故選:B11、C【解析】利用點的坐標表示向量坐標,即可求解.【詳解】設,,,所以,,,解得:,,,即.故選:C12、C【解析】求出圓的圓心和半徑,比較圓心到直線的距離和圓的半徑的關系即可得解.【詳解】圓可變?yōu)?,圓心為,半徑為,圓心到直線的距離,圓上到直線的距離為的點共有個.故選:C.【點睛】本題考查了圓與直線的位置關系,考查了學生合理轉(zhuǎn)化的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】根據(jù)空間向量共線基本定理,可設.由坐標運算求得的值,進而求得.即可求得的值.【詳解】根據(jù)空間向量共線基本定理,可設由向量的坐標運算可得解方程可得所以.故答案為:【點睛】本題考查了空間向量共線基本定理的應用,根據(jù)向量的共線定理求參數(shù),屬于基礎題.14、【解析】根據(jù)球的體積公式求解【詳解】根據(jù)球的體積公式【點睛】球的體積公式15、##【解析】根據(jù)線面平行列方程,化簡求得的值.【詳解】由于,所以.故答案為:16、15【解析】由分析可知每次小球數(shù)量剛好是等差數(shù)列的求和,最后直接公式即可算出答案.【詳解】由題意可知,,所以,故答案為:15三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用公式直接將橢圓的參數(shù)方程轉(zhuǎn)化為普通方程即可.(2)首先求出直線的參數(shù)方程,代入橢圓的普通方程得到,再利用直線參數(shù)方程的幾何意義求弦長即可.【詳解】(1)因為曲線(為參數(shù)),所以曲線的普通方程為:.(2)由題知:直線的參數(shù)方程為(為參數(shù)),將直線的參數(shù)方程代入,得.,.所以.18、(1);(2)(?。?;(ⅱ)證明見解析.【解析】(1)求出,,利用導數(shù)的幾何意義即可求得切線方程;(2)(ⅰ)根據(jù)題意對參數(shù)分類討論,當時,等價轉(zhuǎn)化,且構造函數(shù),利用零點存在定理,即可求得參數(shù)的取值范圍;(ⅱ)根據(jù)(ⅰ)中所求得到與的等量關系,求得并構造函數(shù),利用導數(shù)研究其單調(diào)性和最值,則問題得證.【小問1詳解】當時,,則,故,,則曲線在點處的切線方程為.【小問2詳解】(ⅰ)因為,故可得,因為,則當時,,則,無零點,不滿足題意;當時,若在有一個零點,即在有一個零點,也即在有一個零點,又,則單調(diào)遞增,則只需,解得.綜上所述,若在區(qū)間上有唯一的零點,則;(ⅱ)由(?。┛芍?,若在區(qū)間上有唯一的零點,則,也即,則,令,則,又在都是單調(diào)增函數(shù),故是單調(diào)增函數(shù),又,故,則在單調(diào)遞增,則,故,即證.【點睛】本題考查導數(shù)的幾何意義,利用導數(shù)研究函數(shù)的零點以及最值;處理問題的關鍵是合理轉(zhuǎn)化函數(shù)零點問題,以及充分利用零點存在定理,熟練掌握構造函數(shù)法,屬綜合困難題.19、(1);(2)點不能為線段的中點,理由見解析.【解析】(1)由漸近線夾角求得一個斜率,再代入點的坐標,然后可解得得雙曲線方程;(2)設直線方程為(斜率不存在時另說明),與雙曲線方程聯(lián)立,消元后應用韋達定理,結合中點坐標公式求得,然后難驗證直線與雙曲線是否相交即可得【詳解】解:(1)由題意知,雙曲線的漸近線的傾斜角為30°或60°,即或當時,的標準方程為,代入,無解當時,的標準方程為,代入,解得故的標準方程為(2)不能是線段的中點設交點,,當直線的斜率不存在時,直線與雙曲線只有一個交點,不符合題意.當直線的斜率存在時,設直線方程為,聯(lián)立方程組,整理得,則,由得,將代入判別式,所以滿足題意的直線也不存在所以點不能為線段的中點20、(1)(2)【解析】(1)根據(jù)拋物線的定義或者直接列式化簡即可求出;(2)方法一:設切線的方程為:,與拋物線方程聯(lián)立,由即可求出的值,從而得出點的坐標,即可求出直線方程【小問1詳解】設M(x,y),則解得.所以該拋物線的方程為【小問2詳解】[方法一]:依題意,切線的斜率存在,設切線的方程為:,與拋物線方程聯(lián)立,得,令,得或.從而或,解得或,所以切點A(-1,),B(2,2),直線AB的斜率為,所以直線AB的方程為,整理得.[方法二]:由可得,所以,設切點為(),則切線的斜率,又切線過點P(,-1),所以,整理得,解得或,所以切點的坐標為A(-1,),B(2,2),所以直線AB的斜率為,所以直線AB的方程為,整理得21、(1)(2)1【解析】(1)由題意得,化簡可得答案,(2)求出漸近線方程,設點,,,,,由可得,代入雙曲線方程化簡可得,然后表示的坐標,再進行數(shù)量積運算,化簡后利用基本不等式可得答案【小問1詳解】由題意得,即,整理得,因為雙
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國玉米片行業(yè)市場深度分析及發(fā)展?jié)摿︻A測報告
- 2025年中國發(fā)動機連桿市場供需現(xiàn)狀及投資戰(zhàn)略研究報告
- 2025年中國魚油脂肪乳注射液行業(yè)競爭格局及市場發(fā)展?jié)摿︻A測報告
- 2021-2026年中國狂犬病人免疫球蛋白行業(yè)全景評估及投資規(guī)劃建議報告
- 2025年中國網(wǎng)絡安全評估行業(yè)市場深度評估及投資策略咨詢報告
- 2025年中國強力可逆調(diào)心托輥行業(yè)市場發(fā)展前景及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 2020-2025年中國無人零售店行業(yè)市場運營現(xiàn)狀及行業(yè)發(fā)展趨勢報告
- 2025年中國手機APP市場全面調(diào)研及行業(yè)投資潛力預測報告
- 2025年潛水泵項目可行性研究報告-20250103-062145
- 2025年第三代半導體行業(yè)市場分析報告
- 非誠不找小品臺詞
- 2024年3月江蘇省考公務員面試題(B類)及參考答案
- 患者信息保密法律法規(guī)解讀
- 老年人護理風險防控PPT
- 充電樁采購安裝投標方案(技術方案)
- 醫(yī)院科室考勤表
- 鍍膜員工述職報告
- 春節(jié)期間化工企業(yè)安全生產(chǎn)注意安全生產(chǎn)
- 保險行業(yè)加強清廉文化建設
- Hive數(shù)據(jù)倉庫技術與應用
- 數(shù)字的秘密生活:最有趣的50個數(shù)學故事
評論
0/150
提交評論