版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山西省朔州市重點(diǎn)中學(xué)2023屆高考猜題卷(一)數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.執(zhí)行如圖所示的程序框圖若輸入,則輸出的的值為()A. B. C. D.2.過直線上一點(diǎn)作圓的兩條切線,,,為切點(diǎn),當(dāng)直線,關(guān)于直線對稱時(shí),()A. B. C. D.3.如果直線與圓相交,則點(diǎn)與圓C的位置關(guān)系是()A.點(diǎn)M在圓C上 B.點(diǎn)M在圓C外C.點(diǎn)M在圓C內(nèi) D.上述三種情況都有可能4.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計(jì)算出半音比例,為這個(gè)理論的發(fā)展做出了重要貢獻(xiàn).十二平均律將一個(gè)純八度音程分成十二份,依次得到十三個(gè)單音,從第二個(gè)單音起,每一個(gè)單音的頻率與它的前一個(gè)單音的頻率的比都等于.若第一個(gè)單音的頻率為f,則第八個(gè)單音的頻率為A. B.C. D.5.已知為銳角,且,則等于()A. B. C. D.6.已知復(fù)數(shù),則的虛部為()A. B. C. D.17.某地區(qū)高考改革,實(shí)行“3+2+1”模式,即“3”指語文、數(shù)學(xué)、外語三門必考科目,“1”指在物理、歷史兩門科目中必選一門,“2”指在化學(xué)、生物、政治、地理以及除了必選一門以外的歷史或物理這五門學(xué)科中任意選擇兩門學(xué)科,則一名學(xué)生的不同選科組合有()A.8種 B.12種 C.16種 D.20種8.在復(fù)平面內(nèi),復(fù)數(shù)(,)對應(yīng)向量(O為坐標(biāo)原點(diǎn)),設(shè),以射線Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國數(shù)學(xué)家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,,則,由棣莫弗定理可以導(dǎo)出復(fù)數(shù)乘方公式:,已知,則()A. B.4 C. D.169.已知雙曲線的一條漸近線為,圓與相切于點(diǎn),若的面積為,則雙曲線的離心率為()A. B. C. D.10.在中,是的中點(diǎn),,點(diǎn)在上且滿足,則等于()A. B. C. D.11.已知是定義在上的奇函數(shù),且當(dāng)時(shí),.若,則的解集是()A. B.C. D.12.中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書”,指各種歷史文化知識(shí);“數(shù)”,數(shù)學(xué).某校國學(xué)社團(tuán)開展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰,則“六藝”課程講座不同的排課順序共有()種.A.408 B.120 C.156 D.240二、填空題:本題共4小題,每小題5分,共20分。13.已知i為虛數(shù)單位,復(fù)數(shù),則=_______.14.已知函數(shù),若在定義域內(nèi)恒有,則實(shí)數(shù)的取值范圍是__________.15.已知,則_____16.若函數(shù),其中且,則______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點(diǎn).(1)證明:;(2)求直線與平面所成角的正弦值.18.(12分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點(diǎn),與平面所成的角的正弦值為,求的長.19.(12分)已知曲線:和:(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,且兩種坐標(biāo)系中取相同的長度單位.(1)求曲線的直角坐標(biāo)方程和的方程化為極坐標(biāo)方程;(2)設(shè)與,軸交于,兩點(diǎn),且線段的中點(diǎn)為.若射線與,交于,兩點(diǎn),求,兩點(diǎn)間的距離.20.(12分)已知,(其中).(1)求;(2)求證:當(dāng)時(shí),.21.(12分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點(diǎn),是的中點(diǎn).分別沿,將四邊形和折起,使,重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,,分別為,的中點(diǎn).(1)證明:平面.(2)求直線與平面所成角的正弦值.22.(10分)為了實(shí)現(xiàn)中華民族偉大復(fù)興之夢,把我國建設(shè)成為富強(qiáng)民主文明和諧美麗的社會(huì)主義現(xiàn)代化強(qiáng)國,黨和國家為勞動(dòng)者開拓了寬廣的創(chuàng)造性勞動(dòng)的舞臺(tái).借此“東風(fēng)”,某大型現(xiàn)代化農(nóng)場在種植某種大棚有機(jī)無公害的蔬菜時(shí),為創(chuàng)造更大價(jià)值,提高畝產(chǎn)量,積極開展技術(shù)創(chuàng)新活動(dòng).該農(nóng)場采用了延長光照時(shí)間和降低夜間溫度兩種不同方案.為比較兩種方案下產(chǎn)量的區(qū)別,該農(nóng)場選取了40間大棚(每間一畝),分成兩組,每組20間進(jìn)行試點(diǎn).第一組采用延長光照時(shí)間的方案,第二組采用降低夜間溫度的方案.同時(shí)種植該蔬菜一季,得到各間大棚產(chǎn)量數(shù)據(jù)信息如下圖:(1)如果你是該農(nóng)場的負(fù)責(zé)人,在只考慮畝產(chǎn)量的情況下,請根據(jù)圖中的數(shù)據(jù)信息,對于下一季大棚蔬菜的種植,說出你的決策方案并說明理由;(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長光照時(shí)間的方案,光照設(shè)備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設(shè)備的每年成本為0.2千元/畝.已知該農(nóng)場共有大棚100間(每間1畝),農(nóng)場種植的該蔬菜每年產(chǎn)出兩次,且該蔬菜市場的收購均價(jià)為1千元/千斤.根據(jù)題中所給數(shù)據(jù),用樣本估計(jì)總體,請計(jì)算在兩種不同的方案下,種植該蔬菜一年的平均利潤;(3)農(nóng)場根據(jù)以往該蔬菜的種植經(jīng)驗(yàn),認(rèn)為一間大棚畝產(chǎn)量超過5.25千斤為增產(chǎn)明顯.在進(jìn)行夜間降溫試點(diǎn)的20間大棚中隨機(jī)抽取3間,記增產(chǎn)明顯的大棚間數(shù)為,求的分布列及期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由程序語言依次計(jì)算,直到時(shí)輸出即可【詳解】程序的運(yùn)行過程為當(dāng)n=2時(shí),時(shí),,此時(shí)輸出.故選:C【點(diǎn)睛】本題考查由程序框圖計(jì)算輸出結(jié)果,屬于基礎(chǔ)題2、C【解析】
判斷圓心與直線的關(guān)系,確定直線,關(guān)于直線對稱的充要條件是與直線垂直,從而等于到直線的距離,由切線性質(zhì)求出,得,從而得.【詳解】如圖,設(shè)圓的圓心為,半徑為,點(diǎn)不在直線上,要滿足直線,關(guān)于直線對稱,則必垂直于直線,∴,設(shè),則,,∴,.故選:C.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,考查直線的對稱性,解題關(guān)鍵是由圓的兩條切線關(guān)于直線對稱,得出與直線垂直,從而得就是圓心到直線的距離,這樣在直角三角形中可求得角.3、B【解析】
根據(jù)圓心到直線的距離小于半徑可得滿足的條件,利用與圓心的距離判斷即可.【詳解】直線與圓相交,圓心到直線的距離,即.也就是點(diǎn)到圓的圓心的距離大于半徑.即點(diǎn)與圓的位置關(guān)系是點(diǎn)在圓外.故選:【點(diǎn)睛】本題主要考查直線與圓相交的性質(zhì),考查點(diǎn)到直線距離公式的應(yīng)用,屬于中檔題.4、D【解析】分析:根據(jù)等比數(shù)列的定義可知每一個(gè)單音的頻率成等比數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì)可解.詳解:因?yàn)槊恳粋€(gè)單音與前一個(gè)單音頻率比為,所以,又,則故選D.點(diǎn)睛:此題考查等比數(shù)列的實(shí)際應(yīng)用,解決本題的關(guān)鍵是能夠判斷單音成等比數(shù)列.等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(),數(shù)列是等比數(shù)列;(2)等比中項(xiàng)公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.5、C【解析】
由可得,再利用計(jì)算即可.【詳解】因?yàn)?,,所以,所?故選:C.【點(diǎn)睛】本題考查二倍角公式的應(yīng)用,考查學(xué)生對三角函數(shù)式化簡求值公式的靈活運(yùn)用的能力,屬于基礎(chǔ)題.6、C【解析】
先將,化簡轉(zhuǎn)化為,再得到下結(jié)論.【詳解】已知復(fù)數(shù),所以,所以的虛部為-1.故選:C【點(diǎn)睛】本題主要考查復(fù)數(shù)的概念及運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.7、C【解析】
分兩類進(jìn)行討論:物理和歷史只選一門;物理和歷史都選,分別求出兩種情況對應(yīng)的組合數(shù),即可求出結(jié)果.【詳解】若一名學(xué)生只選物理和歷史中的一門,則有種組合;若一名學(xué)生物理和歷史都選,則有種組合;因此共有種組合.故選C【點(diǎn)睛】本題主要考查兩個(gè)計(jì)數(shù)原理,熟記其計(jì)數(shù)原理的概念,即可求出結(jié)果,屬于??碱}型.8、D【解析】
根據(jù)復(fù)數(shù)乘方公式:,直接求解即可.【詳解】,.故選:D【點(diǎn)睛】本題考查了復(fù)數(shù)的新定義題目、同時(shí)考查了復(fù)數(shù)模的求法,解題的關(guān)鍵是理解棣莫弗定理,將復(fù)數(shù)化為棣莫弗定理形式,屬于基礎(chǔ)題.9、D【解析】
由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì),直線與圓相切的性質(zhì),離心率的求法,屬于中檔題.10、B【解析】
由M是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解.【詳解】解:∵M(jìn)是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點(diǎn)睛】判斷P點(diǎn)是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點(diǎn).②性質(zhì):或取得最小值③坐標(biāo)法:P點(diǎn)坐標(biāo)是三個(gè)頂點(diǎn)坐標(biāo)的平均數(shù).11、B【解析】
利用函數(shù)奇偶性可求得在時(shí)的解析式和,進(jìn)而構(gòu)造出不等式求得結(jié)果.【詳解】為定義在上的奇函數(shù),.當(dāng)時(shí),,,為奇函數(shù),,由得:或;綜上所述:若,則的解集為.故選:.【點(diǎn)睛】本題考查函數(shù)奇偶性的應(yīng)用,涉及到利用函數(shù)奇偶性求解對稱區(qū)間的解析式;易錯(cuò)點(diǎn)是忽略奇函數(shù)在處有意義時(shí),的情況.12、A【解析】
利用間接法求解,首先對6門課程全排列,減去“樂”排在第一節(jié)的情況,再減去“射”和“御”兩門課程相鄰的情況,最后還需加上“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰的情況;【詳解】解:根據(jù)題意,首先不做任何考慮直接全排列則有(種),當(dāng)“樂”排在第一節(jié)有(種),當(dāng)“射”和“御”兩門課程相鄰時(shí)有(種),當(dāng)“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰時(shí)有(種),則滿足“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰的排法有(種),故選:.【點(diǎn)睛】本題考查排列、組合的應(yīng)用,注意“樂”的排列對“射”和“御”兩門課程相鄰的影響,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先把復(fù)數(shù)進(jìn)行化簡,然后利用求模公式可得結(jié)果.【詳解】.故答案為:.【點(diǎn)睛】本題主要考查復(fù)數(shù)模的求解,利用復(fù)數(shù)的運(yùn)算把復(fù)數(shù)化為的形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).14、【解析】
根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)圖象可將原題轉(zhuǎn)化為恒成立問題,湊而可知的圖象在過原點(diǎn)且與兩函數(shù)相切的兩條切線之間;利用過一點(diǎn)的曲線切線的求法可求得兩切線斜率,結(jié)合分母不為零的條件可最終確定的取值范圍.【詳解】由指數(shù)函數(shù)與對數(shù)函數(shù)圖象可知:,恒成立可轉(zhuǎn)化為恒成立,即恒成立,,即是夾在函數(shù)與的圖象之間,的圖象在過原點(diǎn)且與兩函數(shù)相切的兩條切線之間.設(shè)過原點(diǎn)且與相切的直線與函數(shù)相切于點(diǎn),則切線斜率,解得:;設(shè)過原點(diǎn)且與相切的直線與函數(shù)相切于點(diǎn),則切線斜率,解得:;當(dāng)時(shí),,又,滿足題意;綜上所述:實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查恒成立問題的求解,重點(diǎn)考查了導(dǎo)數(shù)幾何意義應(yīng)用中的過一點(diǎn)的曲線切線的求解方法;關(guān)鍵是能夠結(jié)合指數(shù)函數(shù)和對數(shù)函數(shù)圖象將問題轉(zhuǎn)化為切線斜率的求解問題;易錯(cuò)點(diǎn)是忽略分母不為零的限制,忽略對于臨界值能否取得的討論.15、【解析】
化簡得,利用周期即可求出答案.【詳解】解:,∴函數(shù)的最小正周期為6,∴,,故答案為:.【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.16、【解析】
先化簡函數(shù)的解析式,在求出,從而求得的值.【詳解】由題意,函數(shù)可化簡為,所以,所以.故答案為:0.【點(diǎn)睛】本題主要考查了二項(xiàng)式定理的應(yīng)用,以及導(dǎo)數(shù)的運(yùn)算和函數(shù)值的求解,其中解答中正確化簡函數(shù)的解析式,準(zhǔn)確求解導(dǎo)數(shù)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解析】
(1)設(shè)是的中點(diǎn),連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建空間直角坐標(biāo)系,分別計(jì)算各個(gè)點(diǎn)坐標(biāo),計(jì)算平面法向量,利用向量的夾角公式得到直線與平面所成角的正弦值.【詳解】(1)證明:設(shè)是的中點(diǎn),連接、,是的中點(diǎn),,,,,,,是平行四邊形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,過點(diǎn)作,垂足為,平面,以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建立如圖的空間直角坐標(biāo)系,則,,,,設(shè)是平面的一個(gè)法向量,則,,令,則,,,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查了線面垂直,線線垂直,利用空間直角坐標(biāo)系解決線面夾角問題,意在考查學(xué)生的空間想象能力和計(jì)算能力.18、(Ⅰ)見解析;(Ⅱ)【解析】
(Ⅰ)取的中點(diǎn),連接,由,,得三點(diǎn)共線,且,又,再利用線面垂直的判定定理證明.(Ⅱ)設(shè),則,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加求得,再過作,則平面,即點(diǎn)到平面的距離,由是中點(diǎn),得到到平面的距離,然后根據(jù)與平面所成的角的正弦值為求解.【詳解】(Ⅰ)取的中點(diǎn),連接,由,,得三點(diǎn)共線,且,又,,所以平面,所以.(Ⅱ)設(shè),,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加得:,所以,,過作,則平面,即點(diǎn)到平面的距離,因?yàn)槭侵悬c(diǎn),所以為到平面的距離,因?yàn)榕c平面所成的角的正弦值為,即,解得.【點(diǎn)睛】本題主要考查線面垂直的判定定理,線面角的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和空間想象運(yùn)算求解的能力,屬于中檔題.19、(1),;(2)1.【解析】
(1)利用正弦的和角公式,結(jié)合極坐標(biāo)化為直角坐標(biāo)的公式,即可求得曲線的直角坐標(biāo)方程;先寫出曲線的普通方程,再利用公式化簡為極坐標(biāo)即可;(2)先求出的直角坐標(biāo),據(jù)此求得中點(diǎn)的直角坐標(biāo),將其轉(zhuǎn)化為極坐標(biāo),聯(lián)立曲線的極坐標(biāo)方程,即可求得兩點(diǎn)的極坐標(biāo),則距離可解.【詳解】(1):可整理為,利用公式可得其直角坐標(biāo)方程為:,:的普通方程為,利用公式可得其極坐標(biāo)方程為(2)由(1)可得的直角坐標(biāo)方程為,故容易得,,∴,∴的極坐標(biāo)方程為,把代入得,.把代入得,.∴,即,兩點(diǎn)間的距離為1.【點(diǎn)睛】本題考查極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)化,涉及參數(shù)方程轉(zhuǎn)化為普通方程,以及在極坐標(biāo)系中求兩點(diǎn)之間的距離,屬綜合基礎(chǔ)題.20、(1)(2)見解析【解析】
(1)取,則;取,則,∴;(2)要證,只需證,當(dāng)時(shí),;假設(shè)當(dāng)時(shí),結(jié)論成立,即,兩邊同乘以3得:而∴,即時(shí)結(jié)論也成立,∴當(dāng)時(shí),成立.綜上原不等式獲證.21、(1)證明見解析(2)【解析】
(1)先證,再證,由可得平面,從而推出平面;(2)建立空間直角坐標(biāo)系,求出平面的法向量與,坐標(biāo)代入線面角的正弦值公式即可得解.【詳解】(1)證明:連接,,由圖1知,四邊形為菱形,且,所以是正三角形,從而.同理可證,,所以平面.又,所以平面,因?yàn)槠矫?,所以平面平?易知,且為的中點(diǎn),所以,所以平面.(2)解:由(1)可知,,且四邊形為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度航空運(yùn)輸貨物代理委托及質(zhì)量控制合同3篇
- 2024離婚財(cái)產(chǎn)分割協(xié)議公證與投資分割
- 2024版軟件許可與技術(shù)支持合同
- 二零二五年度股權(quán)激勵(lì)與員工離職補(bǔ)償合同樣本3篇
- 年度飛機(jī)碳剎車預(yù)制件戰(zhàn)略市場規(guī)劃報(bào)告
- 高校二零二五年度實(shí)驗(yàn)室科研人員聘用合同2篇
- 針對2025年度環(huán)保項(xiàng)目的技術(shù)研發(fā)合作合同3篇
- 2024-2025學(xué)年高中語文第三課神奇的漢字3方塊的奧妙-漢字的結(jié)構(gòu)練習(xí)含解析新人教版選修語言文字應(yīng)用
- 2024-2025學(xué)年高中政治第三單元思想方法與創(chuàng)新意識(shí)第9課第2框用對立統(tǒng)一的觀點(diǎn)看問題訓(xùn)練含解析新人教版必修4
- 2025年度特色餐飲業(yè)司爐員綜合管理服務(wù)合同3篇
- GB/T 11072-1989銻化銦多晶、單晶及切割片
- GB 15831-2006鋼管腳手架扣件
- 有機(jī)化學(xué)機(jī)理題(福山)
- 醫(yī)學(xué)會(huì)自律規(guī)范
- 商務(wù)溝通第二版第4章書面溝通
- 950項(xiàng)機(jī)電安裝施工工藝標(biāo)準(zhǔn)合集(含管線套管、支吊架、風(fēng)口安裝)
- 微生物學(xué)與免疫學(xué)-11免疫分子課件
- 《動(dòng)物遺傳育種學(xué)》動(dòng)物醫(yī)學(xué)全套教學(xué)課件
- 弱電工程自檢報(bào)告
- 民法案例分析教程(第五版)完整版課件全套ppt教學(xué)教程最全電子教案
- 7.6用銳角三角函數(shù)解決問題 (2)
評論
0/150
提交評論