重慶市綦江南州中學2023年數(shù)學高二上期末經(jīng)典模擬試題含解析_第1頁
重慶市綦江南州中學2023年數(shù)學高二上期末經(jīng)典模擬試題含解析_第2頁
重慶市綦江南州中學2023年數(shù)學高二上期末經(jīng)典模擬試題含解析_第3頁
重慶市綦江南州中學2023年數(shù)學高二上期末經(jīng)典模擬試題含解析_第4頁
重慶市綦江南州中學2023年數(shù)學高二上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

重慶市綦江南州中學2023年數(shù)學高二上期末經(jīng)典模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的左焦點是,右焦點是,點P在橢圓上,如果線段的中點在y軸上,那么()A.3:5 B.3:4C.5:3 D.4:32.設是等差數(shù)列,是其公差,是其前n項的和.若,,則下列結論不正確的是()A. B.C. D.與均為的最大值3.下列說法中正確的是A.命題“若,則”的逆命題為真命題B.若為假命題,則均為假命題C.若為假命題,則為真命題D.命題“若兩個平面向量滿足,則不共線”的否命題是真命題.4.定義焦點相同,且離心率互為倒數(shù)的橢圓和雙曲線為一對相關曲線.已知,是一對相關曲線的焦點,Р是這對相關曲線在第一象限的交點,則點Р與以為直徑的圓的位置關系是()A.在圓外 B.在圓上C.在圓內(nèi) D.不確定5.已知拋物線:的焦點為F,準線l上有兩點A,B,若為等腰直角三角形且面積為8,則拋物線C的標準方程是()A. B.C.或 D.6.已知數(shù)列是首項為,公差為1的等差數(shù)列,數(shù)列滿足.若對任意的,都有成立,則實數(shù)的取值范圍是()A., B.C., D.7.用這3個數(shù)組成沒有重復數(shù)字的三位數(shù),則事件“這個三位數(shù)是偶數(shù)”與事件“這個三位數(shù)大于342”()A.是互斥但不對立事件 B.不是互斥事件C.是對立事件 D.是不可能事件8.若雙曲線(,)的一條漸近線經(jīng)過點,則雙曲線的離心率為()A. B.C. D.29.已知直線l和兩個不同的平面,,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.拋物線的焦點到準線的距離為()A. B.C. D.111.下列求導運算正確的是()A. B.C. D.12.在正方體中中,,若點P在側(cè)面(不含邊界)內(nèi)運動,,且點P到底面的距離為3,則異面直線與所成角的余弦值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量均為非零向量,且滿足,記向量在向量上投影向量為,則k=______.(用數(shù)字作答)14.已知銳角的內(nèi)角,,的對邊分別為,,,且.若,則外接圓面積的最小值為______15.我國著名數(shù)學家華羅庚曾說過:“數(shù)缺形時少直觀,形少數(shù)時難人微”.事實上,很多代數(shù)問題可以轉(zhuǎn)化為幾何問題加以解決,如:與相關的代數(shù)問題可以轉(zhuǎn)化為點與點之間距離的幾何問題.結合上述觀點,可得方程的解是__________.16.已知為坐標原點,等軸雙曲線的右焦點為,點在雙曲線上,由向雙曲線的漸近線作垂線,垂足分別為、,則四邊形的面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓M經(jīng)過原點和點,且它的圓心M在直線上.(1)求圓M的方程;(2)若點D為圓M上的動點,定點,求線段CD的中點P的軌跡方程.18.(12分)已知等差數(shù)列的前n項和為,且,(1)求數(shù)列的通項公式;(2)若,求k的值19.(12分)已知圓心為的圓過原點,且直線與圓相切于點.(1)求圓的方程;(2)已知過點的直線的斜率為,且直線與圓相交于兩點.①若,求弦的長;②若圓上存在點,使得成立,求直線的斜率.20.(12分)已知圓的半徑為,圓心在直線上,點在圓上.(1)求圓的標準方程;(2)若原點在圓內(nèi),求過點且與圓相切的直線方程.21.(12分)已知橢圓:的長軸長是短軸長的倍,且經(jīng)過點.(1)求的標準方程;(2)的右頂點為,過右焦點的直線與交于不同的兩點,,求面積的最大值.22.(10分)如圖,四棱錐中,,且,(1)求證:平面平面;(2)若是等邊三角形,底面是邊長為3的正方形,是中點,求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】求出橢圓的焦點坐標,再根據(jù)點在橢圓上,線段的中點在軸上,求得點坐標,進而計算,從而求解.【詳解】由橢圓方程可得:,設點坐標為,線段的中點為,因為線段中點在軸上,所以,即,代入橢圓方程得或,不妨取,則,所以,故選:A.2、C【解析】由已知條件可以得出,,,即可得公差,再利用等差數(shù)列的性質(zhì)以及前n項的和的性質(zhì)可判斷每個選項的正誤,進而可得正確選項.【詳解】由可得,由可得,故選項B正確;由可得,因為公差,故選項A正確,,所以,故選項C不正確;由于是等差數(shù)列,公差,,,,所以都是的最大值,故選項D正確;所以選項C不正確,故選:C3、D【解析】A中,利用四種命題的的真假判斷即可;B、C中,命題“”為假命題時,、至少有一個為假命題;D中,寫出該命題的否命題,再判斷它的真假性【詳解】對于A,命題“若,則”的逆命題是:若,則;因為也成立.所以A不正確;對于B,命題“”為假命題時,、至少有一個為假命題,所以B錯誤;C錯誤;對于D,“平面向量滿足”,則不共線的否命題是,若“平面向量滿足”,則共線;由知:,一定有,,所以共線,D正確.故選:D.【點睛】本題考查了命題的真假性判斷問題,也考查了推理與判斷能力,是基礎題4、A【解析】設橢圓的長軸長為,橢圓的焦距為,雙曲線的實軸長為,根據(jù)題意可得,設,根據(jù)橢圓與雙曲線的定義將分別用表示,設,再根據(jù)兩點的距離公式將點的坐標用表示,從而可判斷出點與圓的位置關系.【詳解】解:設橢圓的長軸長為,橢圓的焦距為,雙曲線的實軸長為,設橢圓和雙曲線的離心率分別為,則,所以,以為直徑的圓的方程為,設,則有,所以,設,,所以①,②,則①②得,所以,所以,將代入②得,所以,,則點到圓心的距離為,所以點Р在以為直徑的圓外.故選:A.5、C【解析】分或()兩種情況討論,由面積列方程即可求解【詳解】由題意得,當時,,解得;當或時,,解得,所以拋物線的方程是或.故選:C.6、D【解析】由等差數(shù)列通項公式得,再結合題意得數(shù)列單調(diào)遞增,且滿足,,即,再解不等式即可得答案.【詳解】解:根據(jù)題意:數(shù)列是首項為,公差為1的等差數(shù)列,所以,由于數(shù)列滿足,所以對任意的都成立,故數(shù)列單調(diào)遞增,且滿足,,所以,解得故選:7、B【解析】根據(jù)題意列舉出所有可能性,進而根據(jù)各類事件的定義求得答案.【詳解】由題意,將2,3,4組成一個沒有重復數(shù)字的三位數(shù)的情況有:{234,243,324,342,423,432},其中偶數(shù)有{234,324,342,432},大于342的有{423,432}.所以兩個事件不是互斥事件,也不是對立事件.故選:B.8、A【解析】先求出漸近線方程,進而將點代入直線方程得到a,b關系,進而求出離心率.【詳解】由題意,雙曲線的漸近線方程為:,而一條漸近線過點,則,.故選:A.9、D【解析】根據(jù)直線、平面的位置關系,應用定義法判斷兩個條件之間的充分、必要性.【詳解】當,時,直線l可與平行、相交,故不一定成立,即充分性不成立;當,時,直線l可在平面內(nèi),故不一定成立,即必要性不成立.故選:D.10、B【解析】由可得拋物線標椎方程為:,由焦點和準線方程即可得解.【詳解】由可得拋物線標準方程為:,所以拋物線的焦點為,準線方程為,所以焦點到準線的距離為,故選:B【點睛】本題考了拋物線標準方程,考查了焦點和準線相關基本量,屬于基礎題.11、B【解析】根據(jù)基本初等函數(shù)的導數(shù)和求導法則判斷.【詳解】,,,,只有B正確.故選:B.【點睛】本題考查基本初等函數(shù)的導數(shù)公式,考查導數(shù)的運算法則,屬于基礎題.12、A【解析】如圖建立空間直角坐標系,先由,且點P到底面的距離為3,確定點P的位置,然后利用空間向量求解即可【詳解】如圖,以為坐標原點,以所在的直線分別為軸,建立空間直角坐標系,則,所以,所以,所以,因為,所以平面,因為平面平面,點P在側(cè)面(不含邊界)內(nèi)運動,,所以,因為點P到底面的距離為3,所以,所以,因為,所以異面直線與所成角的余弦值為,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、##1.5【解析】由兩邊平方可得,,,設,向量是以向量為鄰邊的平行四邊形、有共同起點的對角線,,由余弦定理可得,向量在向量上投影向量為,化簡可得答案.【詳解】因為,所以,,兩邊平方整理得,,兩邊平方整理得,即,可得,,設,所以向量是以向量為鄰邊的平行四邊形、有共同起點的對角線,如圖,即,因為,,平行四邊形即為的菱形,所以,由余弦定理可得,可得,,向量在向量上投影向量為,即.故答案為:.14、【解析】利用二倍角公式求出,即可得到,再利用余弦定理及基本不等式求出的取值范圍,再利用正弦定理求出外接圓的半徑,即可求出外接圓的面積;【詳解】解:因為,所以,解得或(舍去).又為銳角三角形,所以.因為,當且僅當時等號成立,所以.外接圓的半徑,故外接圓面積的最小值為故答案為:15、【解析】根據(jù)題意,列方程計算即可【詳解】因為,所以,可轉(zhuǎn)化為點到點和點的距離之和為,所以點在橢圓上,則,解得.故答案為:16、##【解析】求出雙曲線的方程,可求得雙曲線的兩條漸近線方程,分析可知四邊形為矩形,然后利用點到直線的距離公式以及矩形的面積公式可求得結果.【詳解】因為雙曲線為等軸雙曲線,則,,可得,所以,雙曲線的方程為,雙曲線的漸近線方程為,則雙曲線的兩條漸近線互相垂直,則,,,所以,四邊形為矩形,設點,則,不妨設點為直線上的點,則,,所以,.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).(2).【解析】(1)設圓M的方程為,由已知條件建立方程組,求解即可;(2)設,,依題意得.代入圓M的方程可得點P的軌跡方程.【小問1詳解】解:設圓M的方程為,則圓心依題意得,解得.所以圓M的方程為.【小問2詳解】解:設,,依題意得,得.點為圓M上的動點,得,化簡得P的軌跡方程為.18、(1)(2)10【解析】(1)設等差數(shù)列的公差為d,利用已知建立方程組,解之可求得數(shù)列的通項公式;(2)利用等差數(shù)列的前項和公式,化簡即可求解.【小問1詳解】解:設等差數(shù)列的公差為d,由已知,,得,解得,則;小問2詳解】解:由(1)得,則由,得或(舍去),所以的值為10.19、(1);(2)①,②.【解析】(1)圓心在線段的垂直平分線上,圓心也在過點且與垂直的直線上,聯(lián)立求圓心,進而得半徑即可;(2)①垂徑定理即可求弦長;②圓上存在點,使得成立,即四邊形是平行四邊形,又,有都是等邊三角形,進而得圓心到直線的距離為,列方程求解即可.試題解析:(1)由已知得,圓心在線段的垂直平分線上,圓心也在過點且與垂直的直線上,由得圓心,所以半徑,所以圓的方程為;(2)①由題意知,直線的方程為,即,∴圓心到直線的距離為,∴;②∵圓上存在點,使得成立,∴四邊形是平行四邊形,又,∴都是等邊三角形,∴圓心到直線的距離為,又直線的方程為,即,∴,解得.20、(1)或(2)或【解析】(1)先設出圓的標準方程,利用點在圓上和圓心在直線上得到圓心坐標的方程組,進而求出圓的標準方程;(2)先利用原點在圓內(nèi)求出圓的方程,設出切線方程,利用圓心到切線的距離等于半徑進行求解.【小問1詳解】解:設圓的標準方程為,由已知得,解得或,故圓的方程為或.【小問2詳解】解:因為,,且原點在圓內(nèi),故圓的方程為,則圓心為,半徑為,設切線為,即,則,解得或,故切線為或,即或即為所求.21、(1);(2)【解析】(1)利用已知條件,結合橢圓方程求出,即可得到橢圓方程(2)設出直線方程,聯(lián)立橢圓與直線方程,利用韋達定理,弦長公式,列出三角形的面積,再利用基本不等式轉(zhuǎn)化求解即可【詳解】(1)解:由題意解得,,所以橢圓的標準方程為(2)點,右焦點,由題意知直線的斜率不為0,故設的方程為,,,聯(lián)立方程得消去,整理得,∴,,,,當且僅當時等號成立,此時:,所以面積的最大值為【點睛】本題考查橢圓的性質(zhì)和方程的求法,考查聯(lián)立直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論