2023屆重慶市六校聯(lián)考高三下學期第三次月考數學試題_第1頁
2023屆重慶市六校聯(lián)考高三下學期第三次月考數學試題_第2頁
2023屆重慶市六校聯(lián)考高三下學期第三次月考數學試題_第3頁
2023屆重慶市六校聯(lián)考高三下學期第三次月考數學試題_第4頁
2023屆重慶市六校聯(lián)考高三下學期第三次月考數學試題_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023屆重慶市六校聯(lián)考高三下學期第三次月考數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線的焦點為,若拋物線上的點關于直線對稱的點恰好在射線上,則直線被截得的弦長為()A. B. C. D.2.在中,點為中點,過點的直線與,所在直線分別交于點,,若,,則的最小值為()A. B.2 C.3 D.3.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.4.已知復數z,則復數z的虛部為()A. B. C.i D.i5.數學中的數形結合,也可以組成世間萬物的絢麗畫面.一些優(yōu)美的曲線是數學形象美、對稱美、和諧美的結合產物,曲線恰好是四葉玫瑰線.給出下列結論:①曲線C經過5個整點(即橫、縱坐標均為整數的點);②曲線C上任意一點到坐標原點O的距離都不超過2;③曲線C圍成區(qū)域的面積大于;④方程表示的曲線C在第二象限和第四象限其中正確結論的序號是()A.①③ B.②④ C.①②③ D.②③④6.已知等邊△ABC內接于圓:x2+y2=1,且P是圓τ上一點,則的最大值是()A. B.1 C. D.27.記為等差數列的前項和.若,,則()A.5 B.3 C.-12 D.-138.根據黨中央關于“精準”脫貧的要求,我市某農業(yè)經濟部門派四位專家對三個縣區(qū)進行調研,每個縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一縣區(qū)的概率為()A. B. C. D.9.半徑為2的球內有一個內接正三棱柱,則正三棱柱的側面積的最大值為()A. B. C. D.10.空氣質量指數是反映空氣狀況的指數,指數值趨小,表明空氣質量越好,下圖是某市10月1日-20日指數變化趨勢,下列敘述錯誤的是()A.這20天中指數值的中位數略高于100B.這20天中的中度污染及以上(指數)的天數占C.該市10月的前半個月的空氣質量越來越好D.總體來說,該市10月上旬的空氣質量比中旬的空氣質量好11.已知,,則()A. B. C.3 D.412.我國數學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果,哥德巴赫猜想的內容是:每個大于2的偶數都可以表示為兩個素數的和,例如:,,,那么在不超過18的素數中隨機選取兩個不同的數,其和等于16的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的系數為________.14.定義在封閉的平面區(qū)域內任意兩點的距離的最大值稱為平面區(qū)域的“直徑”.已知銳角三角形的三個點,,,在半徑為的圓上,且,分別以各邊為直徑向外作三個半圓,這三個半圓和構成平面區(qū)域,則平面區(qū)域的“直徑”的最大值是__________.15.如圖,是圓的直徑,弦的延長線相交于點垂直的延長線于點.求證:16.在四棱錐中,是邊長為的正三角形,為矩形,,.若四棱錐的頂點均在球的球面上,則球的表面積為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)隨著科技的發(fā)展,網絡已逐漸融入了人們的生活.網購是非常方便的購物方式,為了了解網購在我市的普及情況,某調查機構進行了有關網購的調查問卷,并從參與調查的市民中隨機抽取了男女各100人進行分析,從而得到表(單位:人)經常網購偶爾或不用網購合計男性50100女性70100合計(1)完成上表,并根據以上數據判斷能否在犯錯誤的概率不超過0.01的前提下認為我市市民網購與性別有關?(2)①現從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經常網購的概率;②將頻率視為概率,從我市所有參與調查的市民中隨機抽取10人贈送禮品,記其中經常網購的人數為,求隨機變量的數學期望和方差.參考公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)已知命題:,;命題:函數無零點.(1)若為假,求實數的取值范圍;(2)若為假,為真,求實數的取值范圍.19.(12分)已知a>0,證明:1.20.(12分)在直角坐標系中,曲線的參數方程為(為參數,),點.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程,并指出其形狀;(2)曲線與曲線交于,兩點,若,求的值.21.(12分)已知函數.(Ⅰ)當時,求不等式的解集;(Ⅱ)若不等式對任意實數恒成立,求實數的取值范圍.22.(10分)已知函數.(1)若恒成立,求的取值范圍;(2)設函數的極值點為,當變化時,點構成曲線,證明:過原點的任意直線與曲線有且僅有一個公共點.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由焦點得拋物線方程,設點的坐標為,根據對稱可求出點的坐標,寫出直線方程,聯(lián)立拋物線求交點,計算弦長即可.【詳解】拋物線的焦點為,則,即,設點的坐標為,點的坐標為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設直線與拋物線的另一個交點為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【點睛】本題主要考查了拋物線的標準方程,簡單幾何性質,點關于直線對稱,屬于中檔題.2、B【解析】

由,,三點共線,可得,轉化,利用均值不等式,即得解.【詳解】因為點為中點,所以,又因為,,所以.因為,,三點共線,所以,所以,當且僅當即時等號成立,所以的最小值為1.故選:B【點睛】本題考查了三點共線的向量表示和利用均值不等式求最值,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.3、A【解析】

畫出約束條件的可行域,利用目標函數的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因為的最大值為,所以在點處取得最大值,則,即.故選:A【點睛】本題主要考查線性規(guī)劃的應用,利用z的幾何意義,通過數形結合是解決本題的關鍵.4、B【解析】

利用復數的運算法則、虛部的定義即可得出【詳解】,則復數z的虛部為.故選:B.【點睛】本題考查了復數的運算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎題.5、B【解析】

利用基本不等式得,可判斷②;和聯(lián)立解得可判斷①③;由圖可判斷④.【詳解】,解得(當且僅當時取等號),則②正確;將和聯(lián)立,解得,即圓與曲線C相切于點,,,,則①和③都錯誤;由,得④正確.故選:B.【點睛】本題考查曲線與方程的應用,根據方程,判斷曲線的性質及結論,考查學生邏輯推理能力,是一道有一定難度的題.6、D【解析】

如圖所示建立直角坐標系,設,則,計算得到答案.【詳解】如圖所示建立直角坐標系,則,,,設,則.當,即時等號成立.故選:.【點睛】本題考查了向量的計算,建立直角坐標系利用坐標計算是解題的關鍵.7、B【解析】

由題得,,解得,,計算可得.【詳解】,,,,解得,,.故選:B【點睛】本題主要考查了等差數列的通項公式,前項和公式,考查了學生運算求解能力.8、A【解析】

每個縣區(qū)至少派一位專家,基本事件總數,甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數,由此能求出甲,乙兩位專家派遣至同一縣區(qū)的概率.【詳解】派四位專家對三個縣區(qū)進行調研,每個縣區(qū)至少派一位專家基本事件總數:甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數:甲,乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項:【點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,是基礎題.9、B【解析】

設正三棱柱上下底面的中心分別為,底面邊長與高分別為,利用,可得,進一步得到側面積,再利用基本不等式求最值即可.【詳解】如圖所示.設正三棱柱上下底面的中心分別為,底面邊長與高分別為,則,在中,,化為,,,當且僅當時取等號,此時.故選:B.【點睛】本題考查正三棱柱與球的切接問題,涉及到基本不等式求最值,考查學生的計算能力,是一道中檔題.10、C【解析】

結合題意,根據題目中的天的指數值,判斷選項中的命題是否正確.【詳解】對于,由圖可知天的指數值中有個低于,個高于,其中第個接近,第個高于,所以中位數略高于,故正確.對于,由圖可知天的指數值中高于的天數為,即占總天數的,故正確.對于,由圖可知該市月的前天的空氣質量越來越好,從第天到第天空氣質量越來越差,故錯誤.對于,由圖可知該市月上旬大部分指數在以下,中旬大部分指數在以上,所以該市月上旬的空氣質量比中旬的空氣質量好,故正確.故選:【點睛】本題考查了對折線圖數據的分析,讀懂題意是解題關鍵,并能運用所學知識對命題進行判斷,本題較為基礎.11、A【解析】

根據復數相等的特征,求出和,再利用復數的模公式,即可得出結果.【詳解】因為,所以,解得則.故選:A.【點睛】本題考查相等復數的特征和復數的模,屬于基礎題.12、B【解析】

先求出從不超過18的素數中隨機選取兩個不同的數的所有可能結果,然后再求出其和等于16的結果,根據等可能事件的概率公式可求.【詳解】解:不超過18的素數有2,3,5,7,11,13,17共7個,從中隨機選取兩個不同的數共有,其和等于16的結果,共2種等可能的結果,故概率.故選:B.【點睛】古典概型要求能夠列舉出所有事件和發(fā)生事件的個數,本題不可以列舉出所有事件但可以用分步計數得到,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、80.【解析】

只需找到展開式中的項的系數即可.【詳解】展開式的通項為,令,則,故的展開式中的系數為80.故答案為:80.【點睛】本題考查二項式定理的應用,涉及到展開式中的特殊項系數,考查學生的計算能力,是一道容易題.14、【解析】

先找到平面區(qū)域內任意兩點的最大值為,再利用三角恒等變換化簡即可得到最大值.【詳解】由已知及正弦定理,得,所以,,取AB中點E,AC中點F,BC中點G,如圖所示顯然平面區(qū)域任意兩點距離最大值為,而,當且僅當時,等號成立.故答案為:.【點睛】本題考查正弦定理在平面幾何中的應用問題,涉及到距離的最值問題,在處理這類問題時,一定要數形結合,本題屬于中檔題.15、證明見解析.【解析】試題分析:四點共圓,所以,又△∽△,所以,即,得證.試題解析:A.連接,因為為圓的直徑,所以,又,則四點共圓,所以.又△∽△,所以,即,∴.16、【解析】

做中點,的中點,連接,由已知條件可求出,運用余弦定理可求,從而在平面中建立坐標系,則以及的外接圓圓心為和長方形的外接圓圓心為在該平面坐標系的坐標可求,通過球心滿足,即可求出的坐標,從而可求球的半徑,進而能求出球的表面積.【詳解】解:如圖做中點,的中點,連接,由題意知,則設的外接圓圓心為,則在直線上且設長方形的外接圓圓心為,則在上且.設外接球的球心為在中,由余弦定理可知,.在平面中,以為坐標原點,以所在直線為軸,以過點垂直于軸的直線為軸,如圖建立坐標系,由題意知,在平面中且設,則,因為,所以解得.則所以球的表面積為.故答案為:.【點睛】本題考查了幾何體外接球的問題,考查了球的表面積.關于幾何體的外接球的做題思路有:一是通過將幾何體補充到長方體中,將幾何體的外接球等同于長方體的外接球,求出體對角線即為直徑,但這種方法適用性較差;二是通過球的球心與各面外接圓圓心的連線與該平面垂直,設半徑列方程求解;三是通過空間、平面坐標系進行求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)詳見解析;(Ⅱ)①;②數學期望為6,方差為2.4.【解析】

(1)完成列聯(lián)表,由列聯(lián)表,得,由此能在犯錯誤的概率不超過0.01的前提下認為我市市民網購與性別有關.(2)①由題意所抽取的10名女市民中,經常網購的有人,偶爾或不用網購的有人,由此能選取的3人中至少有2人經常網購的概率.②由列聯(lián)表可知,抽到經常網購的市民的頻率為:,由題意,由此能求出隨機變量的數學期望和方差.【詳解】解:(1)完成列聯(lián)表(單位:人):經常網購偶爾或不用網購合計男性5050100女性7030100合計12080200由列聯(lián)表,得:,∴能在犯錯誤的概率不超過0.01的前提下認為我市市民網購與性別有關.(2)①由題意所抽取的10名女市民中,經常網購的有人,偶爾或不用網購的有人,∴選取的3人中至少有2人經常網購的概率為:.②由列聯(lián)表可知,抽到經常網購的市民的頻率為:,將頻率視為概率,∴從我市市民中任意抽取一人,恰好抽到經常網購市民的概率為0.6,由題意,∴隨機變量的數學期望,方差D(X)=.【點睛】本題考查獨立檢驗的應用,考查概率、離散型隨機變量的分布列、數學期望、方差的求法,考查古典概型、二項分布等基礎知識,考查運算求解能力,是中檔題.18、(1)(2)【解析】

(1)為假,則為真,求導,利用導函數研究函數有零點條件得的取值范圍;(2)由為假,為真,知一真一假;分類討論列不等式組可解.【詳解】(1)依題意,為真,則無解,即無解;令,則,故當時,,單調遞增,當,,單調遞減,作出函數圖象如下所示,觀察可知,,即;(2)若為真,則,解得;由為假,為真,知一真一假;若真假,則實數滿足,則;若假真,則實數滿足,無解;綜上所述,實數的取值范圍為.【點睛】本題考查根據全(特)稱命題的真假求參數的問題.其思路:與全稱命題或特稱命題真假有關的參數取值范圍問題的本質是恒成立問題或有解問題.解決此類問題時,一般先利用等價轉化思想將條件合理轉化,得到關于參數的方程或不等式(組),再通過解方程或不等式(組)求出參數的值或范圍.19、證明見解析【解析】

利用分析法,證明a即可.【詳解】證明:∵a>0,∴a1,∴a1≥0,∴要證明1,只要證明a1(a)1﹣4(a)+4,只要證明:a,∵a1,∴原不等式成立.【點睛】本題考查不等式的證明,著重考查分析法的運用,考查推理論證能力,屬于中檔題.20、(1),以為圓心,為半徑的圓;(2)【解析】

(1)根據極坐標與直角坐標的互化公式,直接得到的直角坐標方程并判斷形狀;(2)聯(lián)立直線參數方程與的直角坐標方程,根據直線參數方程中的幾何意義結合求解出的值.【詳解】解:(1)由,得,所以,即,.所以曲線是以為圓心,為半徑的圓.(2)將代入,整理得.設點,所對應的參數分別為,,則,.,解得,則.【點睛】本題考查極坐標與直角坐標的互化以及根據直線參數方程中的幾何意義求值,難度一般.(1)極坐標與直角坐標的互化公式:;(2)若要使用直線參數方程中的幾何意義,要注意將直線的標準參數方程代入到對應曲線的直角坐標方程中,構成關于的一元二次方程并結合韋達定理形式進行分析求解.21、(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)分三種情況討論,分別求解不等式組,然后求并集即可得不等式的解集;(Ⅱ)根據絕對值不等式的性質可得,不等式對任意實數恒成立,等價于,解不等式即可求的取值范圍

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論