版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省湖州市安吉縣上墅私立高級中學(xué)2023年數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將一顆骰子先后拋擲2次,觀察向上的點數(shù),則點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為()A. B.C. D.2.若拋物線x2=8y上一點P到焦點的距離為9,則點P的縱坐標為()A. B.C.6 D.73.已知數(shù)列是遞減的等比數(shù)列,的前項和為,若,,則=()A.54 B.36C.27 D.184.已知圓:,點,則點到圓上點的最小距離為()A.1 B.2C. D.5.已知橢圓:的左、右焦點分別為,,點P是橢圓上的動點,,,則的最小值為()A. B.C D.6.給出下列判斷,其中正確的是()A.三點唯一確定一個平面B.一條直線和一個點唯一確定一個平面C.兩條平行直線與同一條直線相交,三條直線在同一平面內(nèi)D.空間兩兩相交的三條直線在同一平面內(nèi)7.函數(shù)的定義域為開區(qū)間,導(dǎo)函數(shù)在內(nèi)的圖像如圖所示,則函數(shù)在開區(qū)間內(nèi)的極大值點有()A.1個 B.2個C.3個 D.4個8.在中,若,,則外接圓半徑為()A. B.C. D.9.魯班鎖運用了中國古代建筑中首創(chuàng)的榫卯結(jié)構(gòu),相傳由春秋時代各國工匠魯班所作,是由六根內(nèi)部有槽的長方形木條,按橫豎立三方向各兩根凹凸相對咬合一起,形成的一個內(nèi)部卯榫的結(jié)構(gòu)體.魯班鎖的種類各式各樣,千奇百怪.其中以最常見的六根和九根的魯班鎖最為著名.下圖1是經(jīng)典的六根魯班鎖及六個構(gòu)件的圖片,下圖2是其中的一個構(gòu)件的三視圖(圖中單位:mm),則此構(gòu)件的表面積為()A. B.C. D.10.下列說法中正確的是()A.棱柱的側(cè)面可以是三角形B.棱臺的所有側(cè)棱延長后交于一點C.所有幾何體的表面都能展開成平面圖形D.正棱錐的各條棱長都相等11.已知直線,兩個不同的平面,下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則12.設(shè)等差數(shù)列前項和為,若是方程的兩根,則()A.32 B.30C.28 D.26二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在棱長為2的正方體中,E為BC的中點,點P在線段上,分別記四棱錐,的體積為,,則的最小值為______14.已知,滿足約束條件則的最小值為__________15.過點,的直線方程(一般式)為___________.16.若兩定點A,B的距離為3,動點M滿足,則M點的軌跡圍成區(qū)域的面積為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè):實數(shù)滿足,:實數(shù)滿足(1)當時,若與均為真命題,求實數(shù)的取值范圍;(2)當時,若是的必要條件,求實數(shù)的取值范圍18.(12分)籃天技校為了了解車床班學(xué)生的操作能力,設(shè)計了一個考查方案;每個考生從道備選題中一次性隨機抽取道題,按照題目要求獨立完成零件加工,規(guī)定:至少正確加工完成其中個零件方可通過.道備選題中,考生甲有個零件能正確加工完成,個零件不能完成;考生乙每個零件正確完成的概率都是,且每個零件正確加工完成與否互不影響(1)分別求甲、乙兩位考生正確加工完成零件數(shù)的概率分布列(列出分布列表);(2)試從甲、乙兩位考生正確加工完成零件數(shù)的數(shù)學(xué)期望及兩人通過考查的概率分析比較兩位考生的操作能力19.(12分)已知圓.(1)若直線與圓相交于兩點,弦的中點為,求直線的方程;(2)若斜率為1的直線被圓截得的弦為,以為直徑的圓經(jīng)過圓的圓心,求直線的方程.20.(12分)如圖,在四棱錐中,側(cè)面底面,是以為斜邊的等腰直角三角形,,,,點E為的中點.(1)證明:平面;(2)求二面角的余弦值.21.(12分)已知點到兩個定點的距離比為(1)求點的軌跡方程;(2)若過點的直線被點的軌跡截得的弦長為,求直線的方程22.(10分)已知圓,點(1)若點在圓外部,求實數(shù)的取值范圍;(2)當時,過點的直線交圓于,兩點,求面積的最大值及此時直線l的斜率
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】基本事件總數(shù),再利用列舉法求出點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件的個數(shù),由此能求出點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率【詳解】解:將一顆骰子先后拋擲2次,觀察向上的點數(shù)之和,基本事件總數(shù),點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件有:,,,,,,,,共8個,則點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為故選:B2、D【解析】設(shè)出P的縱坐標,利用拋物線的定義列出方程,求出答案.【詳解】由題意得:拋物線準線方程為,P點到拋物線的焦點的距離等于到準線的距離,設(shè)點縱坐標為,則,解得:.故選:D3、C【解析】根據(jù)等比數(shù)列的性質(zhì)及通項公式計算求解即可.【詳解】由,解得或(舍去),,,故選:C4、C【解析】寫出圓的圓心和半徑,求出距離的最小值,再結(jié)合圓外一點到圓上點的距離最小值的方法即可求解.【詳解】由圓:,得圓,半徑為,所以,所以點到圓上點的最小距離為.故選:C.5、A【解析】由橢圓的定義可得;利用基本不等式,若,則,當且僅當時取等號.【詳解】根據(jù)橢圓的定義可知,,即,因為,,所以,當且僅當,時等號成立.故選:A6、C【解析】根據(jù)確定平面的條件可對每一個選項進行判斷.【詳解】對A,如果三點在同一條直線上,則不能確定一個平面,故A錯誤;對B,如果這個點在這條直線上,就不能確定一個平面,故B錯誤;對C,兩條平行直線確定一個平面,一條直線與這兩條平行直線都相交,則這條直線就在這兩條平行直線確定的一個平面內(nèi),故這三條直線在同一平面內(nèi),C正確;對D,空間兩兩相交的三條直線可確定一個平面,也可確定三個平面,故D錯誤.故選:C7、B【解析】利用極值點的定義求解.【詳解】由導(dǎo)函數(shù)的圖象知:函數(shù)在內(nèi),與x軸有四個交點:第一個點處導(dǎo)數(shù)左正右負,第二個點處導(dǎo)數(shù)左負右正,第三個點處導(dǎo)數(shù)左正右正,第四個點處導(dǎo)數(shù)左正右負,所以函數(shù)在開區(qū)間內(nèi)的極大值點有2個,故選:B8、A【解析】根據(jù)三角形面積公式求出c,再由余弦定理求出a,根據(jù)正弦定理即可求外接圓半徑.【詳解】,,,解得由正弦定理可得:,所以故選:A9、B【解析】由三視圖可知,該構(gòu)件是長為100,寬為20,高為20的長方體的上面的中間部分去掉一個長為40,寬為20,高為10的小長方體的一個幾何體,進而求出表面積即可.【詳解】由三視圖可知,該構(gòu)件是長為100,寬為20,高為20的長方體的上面的中間部分去掉一個長為40,寬為20,高為10的小長方體的一個幾何體,如下圖所示,其表面積為:.故選:B.【點睛】本題考查幾何體的表面積的求法,考查三視圖,考查學(xué)生的空間想象能力與計算求解能力,屬于中檔題.10、B【解析】根據(jù)棱柱、棱臺、球、正棱錐結(jié)構(gòu)特征依次判斷選項即可.【詳解】棱柱的側(cè)面都是平行四邊形,A不正確;棱臺是由對應(yīng)的棱錐截得的,B正確;不是所有幾何體的表面都能展開成平面圖形,例如球不能展開成平面圖形,C不正確;正棱錐的各條棱長并不是都相等,應(yīng)該為正棱錐的側(cè)棱長都相等,所以D不正確.故選:B.11、A【解析】根據(jù)線面、面面位置關(guān)系有關(guān)知識對選項逐一分析,由此確定正確選項.【詳解】對于A選項,根據(jù)面面垂直的判定定理可知,A選項正確,對于B選項,當,時,和可能相交,B選項錯誤,對于C選項,當,時,可能含于,C選項錯誤,對于D選項,當,時,可能含于,D選項錯誤.故選:A12、A【解析】根據(jù)給定條件利用韋達定理結(jié)合等差數(shù)列性質(zhì)計算作答.【詳解】因是方程的兩根,則又是等差數(shù)列的前項和,于是得,所以.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè),用參數(shù)表示目標函數(shù),利用均值不等式求最值即可.【詳解】取線段AD中點為F,連接EF、D1F,過P點引于M,于N,則平面,平面,則,∴,設(shè),則,,即,,∴,當且僅當時,等號成立,故答案為:14、2【解析】由題意,根據(jù)約束條件作出可行域圖,如圖所示,將目標函數(shù)轉(zhuǎn)化為,作出其平行直線,并將其在可行域內(nèi)平行上下移動,當移到頂點時,在軸上的截距最小,即.15、【解析】利用兩點式方程可求直線方程.【詳解】∵直線過點,,∴,∴,化簡得.故答案為:.16、【解析】建立如圖直角坐標系,設(shè)點,根據(jù)題意和兩點坐標求距離公式可得,結(jié)合圓的面積公式計算即可.【詳解】以點A為坐標原點,射線AB為x軸的非負半軸建立直角坐標系,如圖,設(shè)點,則,由,化簡并整理得:,于是得點M軌跡是以點為圓心,2為半徑的圓,其面積為,所以M點的軌跡圍成區(qū)域的面積為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)將代入,解一元二次不等式求兩集合的交集即可求解.(2)求出:,根據(jù)題意可得轉(zhuǎn)化為集合的包含關(guān)系即可求解.【詳解】(1)當時,:,:或.因為,中都是真命題.所以所以實數(shù)的取值范圍是;(2)當時,:,:或,所以:,因為是的必要條件,所以,所以,解得,所以實數(shù)的取值范圍是.18、(1)分布列見解析(2)甲的試驗操作能力較強,理由見解析【解析】(1)設(shè)考生甲、乙正確加工完成零件的個數(shù)分別為、,則的可能取值有、、,的可能取值有、、、,且,計算出兩個隨機變量在不同取值下的概率,可得出這兩個隨機變量的概率分布列;(2)計算出、、、的值,比較、的大小,以及、的大小,由此可得出結(jié)論.【小問1詳解】解:設(shè)考生甲、乙正確加工完成零件的個數(shù)分別為、,則的可能取值有、、,的可能取值有、、、,且,,,,所以,考生甲正確加工完成零件數(shù)的概率分布列如下表所示:,,,,所以,考生乙正確加工完成零件數(shù)的概率分布列如下表所示:【小問2詳解】解:,,,,所以,,從做對題的數(shù)學(xué)期望分析,兩人水平相當;從通過考查的概率分析,甲通過的可能性大,因此可以判斷甲的試驗操作能力較強.19、(1)(或(2)或【解析】(1)由條件可得,由此可求直線的斜率,由點斜式求直線的方程;(2)由條件可求到直線的距離,利用待定系數(shù)法求直線的方程.【小問1詳解】圓,得圓心,半徑,直線的斜率:,設(shè)直線的斜率為,有,解得.所求直線的方程為:.(或【小問2詳解】直線m被圓C截得的弦EF為直徑的圓經(jīng)過圓心C,∴圓心C到直線的距離為.設(shè)直線方?為,則解得或直線的方程為:或20、(1)見解析;(2)【解析】(1)用線線平行證明線面平行,∴在平面PCD內(nèi)作BE的平行線即可;(2)求二面角的大小,可以用空間向量進行求解,根據(jù)已知條件,以AD中點O為原點,OB,AD,OP分別為x、y、z軸建立坐標系﹒【小問1詳解】如圖,取PD中點F,連接EF,F(xiàn)C﹒∵E是AP中點,∴EFAD,由題知BCAD,∴BCEF,∴BCFE是平行四邊形,∴BE∥CF,又CF平面PCD,BE平面PCD,∴BE∥平面PCD;【小問2詳解】取AD中點O,連接OP,OB,∵是以為斜邊等腰直角三角形,∴OP⊥AD,又平面平面,平面PAD∩平面=AD,∴OP⊥平面ABCD,∵OB平面ABCD,∴OP⊥OB,由BC∥AD,CD⊥AD,AD=2BC知OB⊥OD,∴OP、OB、OD兩兩垂直,故以O(shè)原點,OB、OD、OP分別為x、y、z軸,建立空間直角坐標系Oxyz,如圖:設(shè)|BC|=1,則B(1,0,0),D(0,1,0),E(0,),P(0,0,1),則,設(shè)平面BED的法向量為,平面PBD的法向量為則,取,,取設(shè)二面角的大小為θ,則cosθ=﹒21、(1)(2)或【解析】(1)設(shè)出,表達出,直接法求出軌跡方程;(2)在第一問的基礎(chǔ)上,先考慮直線斜率不存在時是否符合要求,再考慮斜率存在時,設(shè)出直線方程,表達出圓心到直線的距離,利用垂徑定理列出方程,求出直線方程.【小問1詳解】設(shè),則,,故,兩邊平方得:【小問2詳解】當直線斜率不存在時,直線為,此時弦長為,滿足題意;當直線斜率存在時,設(shè)直線,則圓心到直線距離為,由垂徑定理得:,解得:,此時直線的方程為,綜上:直線的方程為或.22、(1);(2)最大值為2,【解析】(1)根據(jù)題意,將圓的方程變形為標準方程,由點與圓的位置關(guān)系可得,求解不等式組得答案;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧輕工職業(yè)學(xué)院《藥學(xué)綜合實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 昆明冶金高等??茖W(xué)校《高低壓電器及設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 江蘇師范大學(xué)科文學(xué)院《刑法學(xué)總論》2023-2024學(xué)年第一學(xué)期期末試卷
- 吉林化工學(xué)院《UI交互設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南汽車工程職業(yè)學(xué)院《先進材料進展》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖北藝術(shù)職業(yè)學(xué)院《金屬塑性變形》2023-2024學(xué)年第一學(xué)期期末試卷
- 黑龍江農(nóng)業(yè)工程職業(yè)學(xué)院《水文學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 高考物理總復(fù)習(xí)《動量和動量守恒》專項測試卷含答案
- 重慶工商大學(xué)派斯學(xué)院《教育與心理研究方法》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州大學(xué)《商務(wù)禮儀》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海市浦東新區(qū)2023-2024學(xué)年一年級上學(xué)期期末考試數(shù)學(xué)試題
- 插圖在小學(xué)英語口語教學(xué)中的運用
- 前列腺增生藥物治療
- 人工智能知識圖譜(歸納導(dǎo)圖)
- 滴滴補貼方案
- 民宿建筑設(shè)計方案
- 干部基本信息審核認定表
- 2023年11月外交學(xué)院(中國外交培訓(xùn)學(xué)院)2024年度公開招聘24名工作人員筆試歷年高頻考點-難、易錯點薈萃附答案帶詳解
- 春節(jié)行車安全常識普及
- 電機維護保養(yǎng)專題培訓(xùn)課件
- 汽車租賃行業(yè)利潤分析
評論
0/150
提交評論