浙江省溫州市十五校聯(lián)合體2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第1頁
浙江省溫州市十五校聯(lián)合體2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第2頁
浙江省溫州市十五校聯(lián)合體2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第3頁
浙江省溫州市十五校聯(lián)合體2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第4頁
浙江省溫州市十五校聯(lián)合體2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省溫州市十五校聯(lián)合體2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若橢圓的弦恰好被點(diǎn)平分,則所在的直線方程為()A. B.C. D.2.已知中,內(nèi)角,,的對(duì)邊分別為,,,,.若為直角三角形,則的面積為()A. B.C.或 D.或3.已知雙曲線的離心率為,則的漸近線方程為A. B.C. D.4.若正方體ABCD-A1B1C1D1的棱長為1,則直線A1C1到平面ACD1的距離為()A.1 B.C. D.5.如圖,在四面體OABC中,,,,點(diǎn)在線段上,且,為的中點(diǎn),則等于()A. B.C. D.6.在空間直角坐標(biāo)系中,若,,則()A. B.C. D.7.已知命題,,則()A., B.,C., D.,8.曲線與曲線的()A.實(shí)軸長相等 B.虛軸長相等C.焦距相等 D.漸進(jìn)線相同9.已知,向量,,若,則x的值為()A.-1 B.1C.-2 D.210.在平面直角坐標(biāo)系xOy中,雙曲線(,)的左、右焦點(diǎn)分別為,,點(diǎn)M是雙曲線右支上一點(diǎn),,且,則雙曲線的離心率為()A. B.C. D.11.把直線繞原點(diǎn)逆時(shí)針轉(zhuǎn)動(dòng),使它與圓相切,則直線轉(zhuǎn)動(dòng)的最小正角度A. B.C. D.12.有甲、乙兩個(gè)抽獎(jiǎng)箱,甲箱中有3張無獎(jiǎng)票3張有獎(jiǎng)票,乙箱中有4張無獎(jiǎng)票2張有獎(jiǎng)票,某人先從甲箱中抽出一張放進(jìn)乙箱,再從乙箱中任意抽出一張,則最后抽到有獎(jiǎng)票的概率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若“x2-x-6>0”是“x>a”的必要不充分條件,則a的最小值為________.14.若在上是減函數(shù),則實(shí)數(shù)a的取值范圍是_________.15.已知點(diǎn),,,則外接圓的圓心坐標(biāo)為________16.直線與兩坐標(biāo)軸相交于,兩點(diǎn),則線段的垂直平分線的方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦距為,點(diǎn)在橢圓上.過點(diǎn)的直線l交橢圓于A,B兩點(diǎn).(1)求該橢圓的方程;(2)若點(diǎn)P為直線上的動(dòng)點(diǎn),記直線PA,PM,PB的斜率分別為,,.求證:,,成等差數(shù)列.18.(12分)已知函數(shù)(其中a常數(shù))(1)求的單調(diào)遞增區(qū)間;(2)若,時(shí),的最小值為4,求a的值19.(12分)已知是奇函數(shù).(1)求的值;(2)若,求的值20.(12分)某電腦公司為調(diào)查旗下A品牌電腦的使用情況,隨機(jī)抽取200名用戶,根據(jù)不同年齡段(單位:歲)統(tǒng)計(jì)如下表:分組頻率/組距0.010.040.070.060.02(1)根據(jù)上表,試估計(jì)樣本的中位數(shù)、平均數(shù)(同一組數(shù)據(jù)以該組區(qū)間的中點(diǎn)值為代表,結(jié)果精確到0.1);(2)按照年齡段從內(nèi)的用戶中進(jìn)行分層抽樣,抽取6人,再從中隨機(jī)選取2人贈(zèng)送小禮品,求恰有1人在內(nèi)的概率21.(12分)已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,且拋物線上有一點(diǎn)到焦點(diǎn)的距離為6.(1)求拋物線的方程;(2)若不過原點(diǎn)的直線與拋物線交于A、B兩點(diǎn),且,求證:直線過定點(diǎn)并求出定點(diǎn)坐標(biāo).22.(10分)已知點(diǎn)到兩個(gè)定點(diǎn)的距離比為(1)求點(diǎn)的軌跡方程;(2)若過點(diǎn)的直線被點(diǎn)的軌跡截得的弦長為,求直線的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】判斷點(diǎn)M與橢圓的位置關(guān)系,再借助點(diǎn)差法求出直線AB的斜率即可計(jì)算作答.【詳解】顯然點(diǎn)橢圓內(nèi),設(shè)點(diǎn),依題意,,兩式相減得:,而弦恰好被點(diǎn)平分,即,則直線AB的斜率,直線AB:,即,所以所在的直線方程為.故選:D2、C【解析】由正弦定理化角為邊后,由余弦定理求得,然后分類討論:或求解【詳解】由正弦定理,可化為:,即,所以,,所以,又為直角三角形,若,則,,,,若,則,,,故選:C3、C【解析】,故,即,故漸近線方程為.【考點(diǎn)】本題考查雙曲線的基本性質(zhì),考查學(xué)生的化歸與轉(zhuǎn)化能力.4、B【解析】先證明點(diǎn)A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離,再建立空間直角坐標(biāo)系,利用向量法求解.【詳解】因?yàn)槠矫嫫矫?,所以A1C1//平面ACD1,則點(diǎn)A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離.建立如圖所示的空間直角坐標(biāo)系,易知=(0,0,1),由題得平面,所以平面,所以,同理,因?yàn)槠矫?,所以平面,所以是平面一個(gè)法向量,所以平面ACD1的一個(gè)法向量為=(1,1,1),故所求的距離為.故選:B【點(diǎn)睛】方法點(diǎn)睛:求點(diǎn)到平面的距離常用的方法有:(1)幾何法(找作證指求);(2)向量法;(3)等體積法.要根據(jù)已知條件靈活選擇方法求解.5、D【解析】利用空間向量的加法與減法可得出關(guān)于、、的表達(dá)式.【詳解】.故選:D.6、B【解析】直接利用空間向量的坐標(biāo)運(yùn)算求解.【詳解】解:因?yàn)?,,所?故選:B7、C【解析】利用全稱量詞命題的否定可得出結(jié)論.【詳解】命題為全稱量詞命題,該命題的否定為,.故選:C.8、D【解析】將曲線化為標(biāo)準(zhǔn)方程后即可求解.【詳解】化為標(biāo)準(zhǔn)方程為,由于,則兩曲線實(shí)軸長、虛軸長、焦距均不相等,而漸近線方程同為.故選:9、D【解析】根據(jù)給定條件利用空間向量垂直的坐標(biāo)表示計(jì)算作答.【詳解】因向量,,,則,解得,所以x的值為2.故選:D10、A【解析】本題考查雙曲線的定義、幾何性質(zhì)及直角三角形的判定即可解決.【詳解】因?yàn)椋?,所以在中,邊上的中線等于的一半,所以.因?yàn)?,所以可設(shè),,則,解得,所以,由雙曲線的定義得,所以雙曲線的離心率故選:A11、B【解析】根據(jù)直線過原點(diǎn)且與圓相切,求出直線的斜率,再數(shù)形結(jié)合計(jì)算最小旋轉(zhuǎn)角【詳解】解析:由題意,設(shè)切線為,∴.∴或.∴時(shí)轉(zhuǎn)動(dòng)最小∴最小正角為.故選B.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題12、B【解析】先分為在甲箱中抽出一張有獎(jiǎng)票放入乙箱和在甲箱中抽出一張無獎(jiǎng)票放入乙箱,進(jìn)而結(jié)合條件概率求概率的方法求得答案.【詳解】記表示在甲箱中抽出一張有獎(jiǎng)票放進(jìn)乙箱,表示在甲箱中抽出一張無獎(jiǎng)票放進(jìn)乙箱,A表示最后抽到有獎(jiǎng)票.所以,,于是.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】解出不等式x2-x-6>0,由“x2-x-6>0”是“x>a”的必要不充分條件,求出a的最小值.【詳解】由x2-x-6>0,解得x<-2或x>3.因?yàn)椤皒2-x-6>0”是“x>a”的必要不充分條件,所以{x|x>a}是{x|x<-2或x>3}的真子集,即a≥3,故答案為:3.【點(diǎn)睛】本題考查充分條件和必要條件的應(yīng)用,考查一元二次不等式的解法,屬于基礎(chǔ)題.14、【解析】根據(jù)導(dǎo)數(shù)的性質(zhì),結(jié)合常變量分離法進(jìn)行求解即可.【詳解】,因?yàn)樵谏鲜菧p函數(shù),所以在上恒成立,即,當(dāng)時(shí),的最小值為,所以,故答案為:15、【解析】求得的垂直平分線的方程,在求得垂直平分線的交點(diǎn),則問題得解.【詳解】線段中點(diǎn)坐標(biāo)為,線段斜率為,所以線段垂直平分線的斜率為,故線段的垂直平分線方程為,即.線段中點(diǎn)坐標(biāo)為,線段斜率為,所以線段垂直平分線的斜率為,故線段的垂直平分線方程為,即.由.所以外接圓的圓心坐標(biāo)為.故答案為:.【點(diǎn)睛】本題考查直線方程的求解,直線交點(diǎn)坐標(biāo)的求解,屬綜合基礎(chǔ)題.16、【解析】由直線的方程求出直線的斜率以及,兩點(diǎn)坐標(biāo),進(jìn)而可得線段的垂直平分線的斜率以及線段的中點(diǎn)坐標(biāo),利用點(diǎn)斜式即可求解.【詳解】由直線可得,所以直線的斜率為,所以線段的垂直平分線的斜率為,令可得;令可得;即,,所以線段的中點(diǎn)坐標(biāo)為,所以線段的垂直平分線的方程為,整理得.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)根據(jù)焦點(diǎn)坐標(biāo)及橢圓上的點(diǎn),利用橢圓的定義求出a,再由關(guān)系求b,即可得解;(2)分直線斜率存在與不存在兩種情況討論,利用斜率公式計(jì)算出,根據(jù)等差中項(xiàng)計(jì)算,即可證明成等差數(shù)列.【小問1詳解】∵橢圓的焦距,橢圓的兩焦點(diǎn)坐標(biāo)分別為,又點(diǎn)在橢圓上,,即.該橢圓方程為.【小問2詳解】設(shè).當(dāng)直線l的斜率為0時(shí),其方程為,代入,可得.不妨取,則,成等差數(shù)列.當(dāng)直線l的斜率不為0時(shí),設(shè)其方程為,由,消去x得.即,成等差數(shù)列,綜上可得,,成等差數(shù)列.18、(1);(2).【解析】(1)利用三角恒等變換思想化簡(jiǎn)函數(shù)解析式為,然后解不等式,可得答案;(2)由計(jì)算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的最小值,進(jìn)而可求得實(shí)數(shù)的值.【詳解】(1),令,解得.所以,函數(shù)的單調(diào)遞增區(qū)間為;(2)當(dāng)時(shí),,所以,所以,解得.19、(1);(2)4【解析】(1)根據(jù)奇函數(shù)的定義,代入化簡(jiǎn)得,進(jìn)而可得的值;(2)設(shè),可得,根據(jù)奇函數(shù)的性質(zhì)得,進(jìn)而可得結(jié)果.【詳解】解:(1)因?yàn)槭瞧婧瘮?shù),所以,即,整理得,又,所以(2)設(shè),因?yàn)?,所以因?yàn)槭瞧婧瘮?shù),所以所以【點(diǎn)睛】本題主要考查了已知函數(shù)的奇偶性求參數(shù)的值,根據(jù)函數(shù)的奇偶性求函數(shù)的值,屬于中檔題.20、(1)中位數(shù)為38.6,平均數(shù)為38.5歲;(2).【解析】(1)由中位數(shù)分?jǐn)?shù)據(jù)兩邊的頻率相等,列方程求中位數(shù);根據(jù)各組數(shù)據(jù)的中點(diǎn)數(shù)乘以頻率即可得平均數(shù);(2)由分層抽樣確定從中各抽4人、2人,列舉出隨機(jī)選取2人的所有組合,得到恰有1人在的組合數(shù),即可求概率.【詳解】(1)中位數(shù)在中,設(shè)為,則,解得.平均數(shù)為歲.所以樣本的中位數(shù)約為38.6,平均數(shù)為38.5歲.(2)根據(jù)分層抽樣法,其中位于中的有4人,記為,,,;位于中的有2人,記為,.從6人中抽取2人,有,,,,,,,,,,,,,,,共15種情況,恰有1人在內(nèi)的有,,,,,,,,共8種情況,∴恰有1人在內(nèi)的概率為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:由中位數(shù)的性質(zhì)以及平均數(shù)與各組數(shù)據(jù)中點(diǎn)值、頻率的關(guān)系求中位數(shù)、平均數(shù);根據(jù)分層抽樣確定各組選取人數(shù),利用列舉法求概率.21、(1)(2)證明見解析,定點(diǎn)坐標(biāo)為(8,0).【解析】(1)根據(jù)拋物線的定義,即可求出結(jié)果;(2)由題意直線方程可設(shè)為,將其與拋物線方程聯(lián)立,再將轉(zhuǎn)化為,根據(jù)韋達(dá)定理,化簡(jiǎn)求解,即可求出定點(diǎn).【小問1詳解】解:拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,且拋物線上有一點(diǎn),設(shè)拋物線的方程為,到焦點(diǎn)的距離為6,即有點(diǎn)到準(zhǔn)線的距離為6,即解得,即拋物線的標(biāo)準(zhǔn)方程為;【小問2詳解】證明:由題意知直線不能與軸平行,故直線方程可設(shè)為,與拋物線聯(lián)立得,消去得,設(shè),則,則,,由,可得,所以,即,亦即,又,解得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論