版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
云南省綠春縣二中2023年數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知空間向量,,則()A. B.C. D.2.設(shè)為橢圓上一點(diǎn),,為左、右焦點(diǎn),且,則()A.為銳角三角形 B.為鈍角三角形C.為直角三角形 D.,,三點(diǎn)構(gòu)不成三角形3.設(shè)等差數(shù)列的前n項(xiàng)和為.若,則()A.19 B.21C.23 D.384.已知直線(xiàn)過(guò)點(diǎn),且其方向向量,則直線(xiàn)的方程為()A. B.C. D.5.某社區(qū)醫(yī)院為了了解社區(qū)老人與兒童每月患感冒的人數(shù)y(人)與月平均氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4個(gè)月的患?。ǜ忻埃┤藬?shù)與當(dāng)月平均氣溫,其數(shù)據(jù)如下表:月平均氣溫x(℃)171382月患病y(人)24334055由表中數(shù)據(jù)算出線(xiàn)性回歸方程中的,氣象部門(mén)預(yù)測(cè)下個(gè)月的平均氣溫約為9℃,據(jù)此估計(jì)該社區(qū)下個(gè)月老年人與兒童患病人數(shù)約為()A.38 B.40C.46 D.586.已知等差數(shù)列的前項(xiàng)和為,若,,則()A. B.C. D.7.命題“,”的否定是A., B.,C., D.,8.若復(fù)數(shù)滿(mǎn)足,則復(fù)平面內(nèi)表示的點(diǎn)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限9.若等差數(shù)列,其前n項(xiàng)和為,,,則()A.10 B.12C.14 D.1610.在等差數(shù)列中,若,,則公差d=()A. B.C.3 D.-311.設(shè)a,b,c非零實(shí)數(shù),且,則()A. B.C. D.12.等差數(shù)列中,已知,則()A.36 B.27C.18 D.9二、填空題:本題共4小題,每小題5分,共20分。13.拋物線(xiàn)的準(zhǔn)線(xiàn)方程為_(kāi)______.14.?dāng)?shù)學(xué)中,多數(shù)方程不存在求根公式.因此求精確根非常困難,甚至不可能.從而尋找方程的近似根就顯得特別重要.例如牛頓迭代法就是求方程近似根的重要方法之一,其原理如下:假設(shè)是方程的根,選取作為的初始近似值,在點(diǎn)處作曲線(xiàn)的切線(xiàn),則與軸交點(diǎn)的橫坐標(biāo)稱(chēng)為的一次近似值,在點(diǎn)處作曲線(xiàn)的切線(xiàn).則與軸交點(diǎn)的橫坐標(biāo)稱(chēng)為的二次近似值.重復(fù)上述過(guò)程,用逐步逼近.若給定方程,取,則__________.15.某廠(chǎng)將從64名員工中用系統(tǒng)抽樣的方法抽取4名參加2011年職工勞技大賽,將這64名員工編號(hào)為1~64,若已知8號(hào)、24號(hào)、56號(hào)在樣本中,那么樣本中最后一個(gè)員工的號(hào)碼是__________16.雙曲線(xiàn)上的一點(diǎn)到一個(gè)焦點(diǎn)的距離等于1,那么點(diǎn)到另一個(gè)焦點(diǎn)的距離為_(kāi)________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐S?ABCD中,已知四邊形ABCD是邊長(zhǎng)為的正方形,點(diǎn)S在底面ABCD上的射影為底面ABCD的中心點(diǎn)O,點(diǎn)P在棱SD上,且△SAC的面積為1(1)若點(diǎn)P是SD的中點(diǎn),求證:平面SCD⊥平面PAC;(2)在棱SD上是否存在一點(diǎn)P使得二面角P?AC?D的余弦值為?若存在,求出點(diǎn)P的位置;若不存在,說(shuō)明理由18.(12分)已知函數(shù).(1)求函數(shù)的極值;(2)是否存在實(shí)數(shù),,,對(duì)任意的正數(shù),都有成立?若存在,求出,,的所有值;若不存在,請(qǐng)說(shuō)明理由.19.(12分)在中,已知,,,,分別為邊,的中點(diǎn),于點(diǎn).(1)求直線(xiàn)方程;(2)求直線(xiàn)的方程.20.(12分)如圖,已知多面體,,,均垂直于平面,,,,(1)證明:平面;(2)求直線(xiàn)平面所成的角的正弦值21.(12分)已知圓:,,為圓上的動(dòng)點(diǎn),若線(xiàn)段的垂直平分線(xiàn)交于點(diǎn).(1)求動(dòng)點(diǎn)的軌跡的方程;(2)已知為上一點(diǎn),過(guò)作斜率互為相反數(shù)且不為0的兩條直線(xiàn),分別交曲線(xiàn)于,,求的取值范圍.22.(10分)如圖所示,在正方體中,點(diǎn),,分別是,,的中點(diǎn)(1)證明:;(2)求直線(xiàn)與平面所成角的大小
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】直接利用向量的坐標(biāo)運(yùn)算法則求解即可【詳解】因?yàn)椋?,所以,故選:C2、D【解析】根據(jù)橢圓方程求出,然后結(jié)合橢圓定義和已知條件求出并求出,進(jìn)而判斷答案.【詳解】由題意可知,,由橢圓的定義可知,而,聯(lián)立方程解得,且,則6+2=8,即不構(gòu)成三角形.故選:D.3、A【解析】由已知及等差數(shù)列的通項(xiàng)公式得到公差d,再利用前n項(xiàng)和公式計(jì)算即可.【詳解】設(shè)等差數(shù)列的公差為d,由已知,得,解得,所以.故選:A4、D【解析】根據(jù)題意和直線(xiàn)的點(diǎn)方向式方程即可得出結(jié)果.【詳解】因?yàn)橹本€(xiàn)過(guò)點(diǎn),且方向向量為,由直線(xiàn)的點(diǎn)方向式方程,可得直線(xiàn)的方程為:,整理,得.故選:D5、B【解析】由表格數(shù)據(jù)求樣本中心,根據(jù)線(xiàn)性回歸方程過(guò)樣本中心點(diǎn),將點(diǎn)代入方程求參數(shù),寫(xiě)出回歸方程,進(jìn)而估計(jì)下個(gè)月老年人與兒童患病人數(shù).【詳解】由表格得為,由回歸方程中的,∴,解得,即,當(dāng)時(shí),.故選:B.6、B【解析】根據(jù)和可求得,結(jié)合等差數(shù)列通項(xiàng)公式可求得.【詳解】設(shè)等差數(shù)列公差為,由得:;又,,.故選:B.7、C【解析】特稱(chēng)命題的否定是全稱(chēng)命題,改量詞,且否定結(jié)論,故命題的否定是“”.本題選擇C選項(xiàng).8、A【解析】根據(jù)復(fù)數(shù)的運(yùn)算法則,求得,結(jié)合復(fù)數(shù)的幾何意義,即可求解.【詳解】由題意,復(fù)數(shù)滿(mǎn)足,可得,所以復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,位于第一象限.故選:A.9、B【解析】由等差數(shù)列前項(xiàng)和的性質(zhì)計(jì)算即可.【詳解】由等差數(shù)列前項(xiàng)和的性質(zhì)可得成等差數(shù)列,,即,得.故選:B.10、C【解析】由等差數(shù)列的通項(xiàng)公式計(jì)算【詳解】因?yàn)椋?,所?故選:C【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式,利用等差數(shù)列通項(xiàng)公式可得,11、C【解析】對(duì)于A(yíng)、B、D:取特殊值否定結(jié)論;對(duì)于C:利用作差法證明.【詳解】對(duì)于A(yíng):取符合已知條件,但是不成立.故A錯(cuò)誤;對(duì)于B:取符合已知條件,但是,所以不成立.故B錯(cuò)誤;對(duì)于C:因?yàn)?,所?故C正確;對(duì)于D:取符合已知條件,但是,所以不成立.故D錯(cuò)誤;故選:C.12、B【解析】直接利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)求解.【詳解】解:由題得.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由拋物線(xiàn)的標(biāo)準(zhǔn)方程為x2=y,得拋物線(xiàn)是焦點(diǎn)在y軸正半軸的拋物線(xiàn),2p=1,∴其準(zhǔn)線(xiàn)方程是y=,故答案為14、【解析】根據(jù)牛頓迭代法的知識(shí)求得.【詳解】構(gòu)造函數(shù),,切線(xiàn)的方程為,與軸交點(diǎn)的橫坐標(biāo)為.,所以切線(xiàn)的方程為,與軸交點(diǎn)的橫坐標(biāo)為.故答案為:15、40【解析】結(jié)合系統(tǒng)抽樣的抽樣方法來(lái)確定最后抽取的號(hào)碼.【詳解】因?yàn)榉侄伍g隔為,故最后一個(gè)員工的號(hào)碼為.故答案為:16、【解析】首先將已知的雙曲線(xiàn)方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,然后根據(jù)雙曲線(xiàn)的定義知雙曲線(xiàn)上的點(diǎn)到兩個(gè)焦點(diǎn)的距離之差的絕對(duì)值為,即可求出點(diǎn)到另一個(gè)焦點(diǎn)的距離為17.考點(diǎn):雙曲線(xiàn)的定義.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)存在,點(diǎn)P為棱SD靠近點(diǎn)D的三等分點(diǎn)【解析】(1)由的面積為1,得到,,由,點(diǎn)P為SD的中點(diǎn),所以,同理可得,根據(jù)線(xiàn)面垂直的判斷定理可得平面PAC,再由面面垂直的判斷定理可得答案;(2)存在,分別以O(shè)B,OC,OS所在直線(xiàn)為x,y,z軸,建立空間直角坐標(biāo)系,假設(shè)在棱SD上存在點(diǎn)P,設(shè),求出平面PAC、平面ACD的一個(gè)法向量,由二面角的向量法可得答案.【小問(wèn)1詳解】因?yàn)辄c(diǎn)S在底面ABCD上的射影為O,所以平面ABCD,因?yàn)樗倪呅蜛BCD是邊長(zhǎng)為的正方形,所以,又因?yàn)榈拿娣e為1,所以,,所以,因?yàn)?,點(diǎn)P為SD的中點(diǎn),所以,同理可得,因?yàn)椋珹P,平面PAC,所以平面PAC,又平面SCD,∴平面平面PAC【小問(wèn)2詳解】存在,連接,由平面ABCD,平面ABCD,平面ABCD,又,可得兩兩垂直,分別以所在直線(xiàn)為x,y,z軸,建立空間直角坐標(biāo)系,如圖,則,,,,假設(shè)在棱SD上存在點(diǎn)P使二面角的余弦值為,設(shè),,,所以,,設(shè)平面PAC的一個(gè)法向量為,則,因?yàn)椋?,所以,令,得,,因?yàn)槠矫鍭CD的一個(gè)法向量為,所以,化簡(jiǎn)得,解得或(舍),所以存在P點(diǎn)符合題意,點(diǎn)P為棱SD靠近點(diǎn)D的三等分點(diǎn)18、(1)極小值為:,無(wú)極大值(2),,【解析】(1)先求導(dǎo)求單調(diào)性,再判斷極值點(diǎn)求極值即可;(2)易知,只需要為函數(shù)和的公切線(xiàn)即可,求出公切線(xiàn),代入后分別證明和成立即可.【小問(wèn)1詳解】由題意知:,令,解得,令,解得,所以函數(shù)在單調(diào)遞增,在單調(diào)遞減,所以為函數(shù)的極小值點(diǎn),即極小值為:,無(wú)極大值.【小問(wèn)2詳解】設(shè),易知,所以點(diǎn)是和的公共點(diǎn),要使成立,只需要為函數(shù)和的公切線(xiàn)即可,由(1)知,,所以在點(diǎn)處的切線(xiàn)為:,同理可得在點(diǎn)處的切線(xiàn)為:,由題意知為同一條直線(xiàn),所以解得,即等價(jià)于;下面證明這個(gè)式子成立:首先證明等價(jià)于,設(shè),所以,恒成立,所以單調(diào)遞增,易知,所以當(dāng)時(shí),,當(dāng)時(shí),,所以在單調(diào)遞減,在單調(diào)遞增,所以,故不等式成立,即成立;再證明:等價(jià)于,設(shè),所以,所以當(dāng)時(shí),,當(dāng)時(shí),,所以在單調(diào)遞增,在單調(diào)遞減,所以,故不等式成立,即成立;綜上所述,存在,,使得成立.故:,,.【點(diǎn)睛】函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它的應(yīng)用貫穿于整個(gè)高中數(shù)學(xué)的教學(xué)之中.某些數(shù)學(xué)問(wèn)題從表面上看似乎與函數(shù)的單調(diào)性無(wú)關(guān),但如果我們能挖掘其內(nèi)在聯(lián)系,抓住其本質(zhì),那么運(yùn)用函數(shù)的單調(diào)性解題,能起到化難為易、化繁為簡(jiǎn)的作用.因此對(duì)函數(shù)的單調(diào)性進(jìn)行全面、準(zhǔn)確的認(rèn)識(shí),并掌握好使用的技巧和方法,這是非常必要的.根據(jù)題目的特點(diǎn),構(gòu)造一個(gè)適當(dāng)?shù)暮瘮?shù),利用它的單調(diào)性進(jìn)行解題,是一種常用技巧.許多問(wèn)題,如果運(yùn)用這種思想去解決,往往能獲得簡(jiǎn)潔明快的思路,有著非凡的功效.19、(1);(2).【解析】(1)根據(jù)給定條件求出點(diǎn)D,E坐標(biāo),再求出直線(xiàn)DE方程作答.(2)求出直線(xiàn)AH的斜率,再借助直線(xiàn)的點(diǎn)斜式方程求解作答.【小問(wèn)1詳解】在中,,,,則邊中點(diǎn),邊的中點(diǎn),直線(xiàn)DE斜率,于是得,即,所以直線(xiàn)的方程是:.【小問(wèn)2詳解】依題意,,則直線(xiàn)BC的斜率為,又,因此,直線(xiàn)的斜率為,所以直線(xiàn)的方程為:,即.20、(1)證明見(jiàn)解析;(2)【解析】(1)由已知條件可得,,則,,再利用線(xiàn)面垂直的判定定理可證得結(jié)論;(2)如圖,過(guò)點(diǎn)作,交直線(xiàn)于點(diǎn),連接,可證得平面,從而是與平面所成的角,然后在求解即可【詳解】(1)證明:由,,,,得,所以,由由,,,,得,由,得,由,得,所以,故,又,因此平面(2)解如圖,過(guò)點(diǎn)作,交直線(xiàn)于點(diǎn),連接由平面,平面,得平面平面,由,得平面,所以是與平面所成的角由,,得,,所以,故因此,直線(xiàn)與平面所成的角的正弦值是【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查線(xiàn)面垂直的判定和線(xiàn)面角的求法,解題的關(guān)鍵是通過(guò)過(guò)點(diǎn)作,交直線(xiàn)于點(diǎn),連接,然后結(jié)合條件可證得是與平面所成的角,從而在三角形中求解即可,考查推理能力和計(jì)算能力,屬于中檔題21、(1)動(dòng)點(diǎn)的軌跡的方程為;(2)的取值范圍.【解析】(1)由條件線(xiàn)段的垂直平分線(xiàn)交于點(diǎn)可得,由此可得,根據(jù)橢圓的定義可得點(diǎn)的軌跡為橢圓,結(jié)合橢圓的標(biāo)準(zhǔn)方程求動(dòng)點(diǎn)的軌跡的方程;(2)由(1)可求點(diǎn)坐標(biāo),設(shè)直線(xiàn)的方程為,,聯(lián)立方程組化簡(jiǎn)可得,,由直線(xiàn),的斜率互為相反數(shù)可得的值,再由弦長(zhǎng)公式求的長(zhǎng),再求其范圍.【小問(wèn)1詳解】由題知故.即即在以為焦點(diǎn)且長(zhǎng)軸為4的橢圓上則動(dòng)點(diǎn)的軌跡的方程為:;【小問(wèn)2詳解】故即.設(shè):,聯(lián)立(*),,∴,,又則:即若,則過(guò),不符合題意故,∴,故
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GFRP旋轉(zhuǎn)超聲孔加工仿真及工藝研究》
- 《中韓家庭劇倫理文化比較研究》
- 《我國(guó)出口信用保險(xiǎn)助推中小企業(yè)發(fā)展研究》
- 2024年度農(nóng)業(yè)生產(chǎn)能耗監(jiān)測(cè)與節(jié)能服務(wù)合同
- 《新一代信息技術(shù)產(chǎn)業(yè)動(dòng)態(tài)跟蹤及趨勢(shì)洞察月報(bào)(2024年3月)》范文
- 高壓電工作業(yè)考試題及答案
- 2024年度智能家居定制服務(wù)合同
- 2024年連云港道路客運(yùn)輸從業(yè)資格證培訓(xùn)資料
- 2024年貴州客運(yùn)駕駛員考試卷及答案
- 2024年安徽客運(yùn)員考試題庫(kù)答案解析
- 局部放電測(cè)量原理及方法
- 固定資產(chǎn)情況表
- 水利工程管理單位定崗標(biāo)準(zhǔn)(試點(diǎn))
- 《建筑施工技術(shù)》課后習(xí)題答案(大學(xué)期末復(fù)習(xí)資料)
- 公司環(huán)境行政處罰事件處置預(yù)案
- 廣東開(kāi)放大學(xué)風(fēng)險(xiǎn)投資(本2022春)-練習(xí)4答案
- DB65∕T 3253-2020 建筑消防設(shè)施質(zhì)量檢測(cè)評(píng)定規(guī)程
- 二年級(jí)蘇教版數(shù)學(xué)上冊(cè)《7的乘法口訣》教案(公開(kāi)課三稿)
- (完整PPT)半導(dǎo)體物理與器件物理課件
- ASTM B366 B366M-20 工廠(chǎng)制造的變形鎳和鎳合金配件標(biāo)準(zhǔn)規(guī)范
- JIS G4304-2021 熱軋不銹鋼板材、薄板材和帶材
評(píng)論
0/150
提交評(píng)論