




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海婁山中學七年級下冊數學期末試卷測試卷(解析版)一、解答題1.已知,如圖1,射線PE分別與直線AB,CD相交于E、F兩點,∠PFD的平分線與直線AB相交于點M,射線PM交CD于點N,設∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0(1)α=,β=;直線AB與CD的位置關系是;(2)如圖2,若點G、H分別在射線MA和線段MF上,且∠MGH=∠PNF,試找出∠FMN與∠GHF之間存在的數量關系,并證明你的結論;(3)若將圖中的射線PM繞著端點P逆時針方向旋轉(如圖3),分別與AB、CD相交于點M1和點N1時,作∠PM1B的角平分線M1Q與射線FM相交于點Q,問在旋轉的過程中的值是否改變?若不變,請求出其值;若變化,請說明理由.2.已知:直線AB∥CD,M,N分別在直線AB,CD上,H為平面內一點,連HM,HN.(1)如圖1,延長HN至G,∠BMH和∠GND的角平分線相交于點E.求證:2∠MEN﹣∠MHN=180°;(2)如圖2,∠BMH和∠HND的角平分線相交于點E.①請直接寫出∠MEN與∠MHN的數量關系:;②作MP平分∠AMH,NQ∥MP交ME的延長線于點Q,若∠H=140°,求∠ENQ的度數.(可直接運用①中的結論)3.已知,點為平面內一點,于.(1)如圖1,求證:;(2)如圖2,過點作的延長線于點,求證:;(3)如圖3,在(2)問的條件下,點、在上,連接、、,且平分,平分,若,,求的度數.4.如圖1,把一塊含30°的直角三角板ABC的BC邊放置于長方形直尺DEFG的EF邊上.(1)根據圖1填空:∠1=°,∠2=°;(2)現把三角板繞B點逆時針旋轉n°.①如圖2,當n=25°,且點C恰好落在DG邊上時,求∠1、∠2的度數;②當0°<n<180°時,是否會存在三角板某一邊所在的直線與直尺(有四條邊)某一邊所在的直線垂直?如果存在,請直接寫出所有n的值和對應的那兩條垂線;如果不存在,請說明理由.5.如圖,已知直線射線CD,.P是射線EB上一動點,過點P作PQEC交射線CD于點Q,連接CP.作,交直線AB于點F,CG平分.(1)若點P,F,G都在點E的右側,求的度數;(2)若點P,F,G都在點E的右側,,求的度數;(3)在點P的運動過程中,是否存在這樣的情形,使?若存在,求出的度數;若不存在,請說明理由.二、解答題6.為更好地理清平行線相關角的關系,小明爸爸為他準備了四根細直木條、、、,做成折線,如圖1,且在折點B、C、D處均可自由轉出.(1)如圖2,小明將折線調節(jié)成,,,判斷是否平行于,并說明理由;(2)如圖3,若,調整線段、使得求出此時的度數,要求畫出圖形,并寫出計算過程.(3)若,,,請直接寫出此時的度數.7.如圖1,點O在上,,射線交于點C,已知m,n滿足:.(1)試說明//的理由;(2)如圖2,平分,平分,直線、交于點E,則______;(3)若將繞點O逆時針旋轉,其余條件都不變,在旋轉過程中,的度數是否發(fā)生變化?請說明你的結論.8.綜合與探究(問題情境)王老師組織同學們開展了探究三角之間數量關系的數學活動.(1)如圖1,EF∥MN,點A、B分別為直線EF、MN上的一點,點P為平行線間一點,請直接寫出∠PAF、∠PBN和∠APB之間的數量關系;(問題遷移)(2)如圖2,射線OM與射線ON交于點O,直線m∥n,直線m分別交OM、ON于點A、D,直線n分別交OM、ON于點B、C,點P在射線OM上運動.①當點P在A、B(不與A、B重合)兩點之間運動時,設∠ADP=∠α,∠BCP=∠β.則∠CPD,∠α,∠β之間有何數量關系?請說明理由;②若點P不在線段AB上運動時(點P與點A、B、O三點都不重合),請你畫出滿足條件的所有圖形并直接寫出∠CPD,∠α,∠β之間的數量關系.9.已知,交AC于點E,交AB于點F.(1)如圖1,若點D在邊BC上,①補全圖形;②求證:.(2)點G是線段AC上的一點,連接FG,DG.①若點G是線段AE的中點,請你在圖2中補全圖形,判斷,,之間的數量關系,并證明;②若點G是線段EC上的一點,請你直接寫出,,之間的數量關系.10.已知兩條直線l1,l2,l1∥l2,點A,B在直線l1上,點A在點B的左邊,點C,D在直線l2上,且滿足.(1)如圖①,求證:AD∥BC;(2)點M,N在線段CD上,點M在點N的左邊且滿足,且AN平分∠CAD;(Ⅰ)如圖②,當時,求∠DAM的度數;(Ⅱ)如圖③,當時,求∠ACD的度數.三、解答題11.如圖,直線m與直線n互相垂直,垂足為O、A、B兩點同時從點O出發(fā),點A沿直線m向左運動,點B沿直線n向上運動.(1)若∠BAO和∠ABO的平分線相交于點Q,在點A,B的運動過程中,∠AQB的大小是否會發(fā)生變化?若不發(fā)生變化,請求出其值,若發(fā)生變化,請說明理由.(2)若AP是∠BAO的鄰補角的平分線,BP是∠ABO的鄰補角的平分線,AP、BP相交于點P,AQ的延長線交PB的延長線于點C,在點A,B的運動過程中,∠P和∠C的大小是否會發(fā)生變化?若不發(fā)生變化,請求出∠P和∠C的度數;若發(fā)生變化,請說明理由.12.如圖1,已知線段AB、CD相交于點O,連接AC、BD,我們把形如圖1的圖形稱之為“8字形”.如圖2,∠CAB和∠BDC的平分線AP和DP相交于點P,并且與CD、AB分別相交于M、N.試解答下列問題:(1)仔細觀察,在圖2中有個以線段AC為邊的“8字形”;(2)在圖2中,若∠B=96°,∠C=100°,求∠P的度數;(3)在圖2中,若設∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間存在著怎樣的數量關系(用α、β表示∠P),并說明理由;(4)如圖3,則∠A+∠B+∠C+∠D+∠E+∠F的度數為.13.在中,,,點在直線上運動(不與點、重合),點在射線上運動,且,設.(1)如圖①,當點在邊上,且時,則__________,__________;(2)如圖②,當點運動到點的左側時,其他條件不變,請猜想和的數量關系,并說明理由;(3)當點運動到點的右側時,其他條件不變,和還滿足(2)中的數量關系嗎?請在圖③中畫出圖形,并給予證明.(畫圖痕跡用黑色簽字筆加粗加黑)14.如圖,,點A、B分別在直線MN、GH上,點O在直線MN、GH之間,若,.(1)=;(2)如圖2,點C、D是、角平分線上的兩點,且,求的度數;(3)如圖3,點F是平面上的一點,連結FA、FB,E是射線FA上的一點,若,,且,求n的值.15.已知ABCD,點E是平面內一點,∠CDE的角平分線與∠ABE的角平分線交于點F.(1)若點E的位置如圖1所示.①若∠ABE=60°,∠CDE=80°,則∠F=°;②探究∠F與∠BED的數量關系并證明你的結論;(2)若點E的位置如圖2所示,∠F與∠BED滿足的數量關系式是.(3)若點E的位置如圖3所示,∠CDE為銳角,且,設∠F=α,則α的取值范圍為.【參考答案】一、解答題1.(1)20,20,;(2);(3)的值不變,【分析】(1)根據,即可計算和的值,再根據內錯角相等可證;(2)先根據內錯角相等證,再根據同旁內角互補和等量代換得出;(3)作的平分線交的延長線于解析:(1)20,20,;(2);(3)的值不變,【分析】(1)根據,即可計算和的值,再根據內錯角相等可證;(2)先根據內錯角相等證,再根據同旁內角互補和等量代換得出;(3)作的平分線交的延長線于,先根據同位角相等證,得,設,,得出,即可得.【詳解】解:(1),,,,,,,;故答案為:20、20,;(2);理由:由(1)得,,,,,,,;(3)的值不變,;理由:如圖3中,作的平分線交的延長線于,,,,,,,,設,,則有:,可得,,.【點睛】本題主要考查平行線的判定與性質,熟練掌握內錯角相等證平行,平行線同旁內角互補等知識是解題的關鍵.2.(1)見解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)過點E作EP∥AB交MH于點Q,利用平行線的性質、角平分線性質、鄰補角和為180°,角與角之間的基本運算、等量代換等即解析:(1)見解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)過點E作EP∥AB交MH于點Q,利用平行線的性質、角平分線性質、鄰補角和為180°,角與角之間的基本運算、等量代換等即可得證.(2)①過點H作GI∥AB,利用(1)中結論2∠MEN﹣∠MHN=180°,利用平行線的性質、角平分線性質、鄰補角和為180°,角與角之間的基本運算、等量代換等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),進而用等量代換得出2∠MEN+∠MHN=360°.②過點H作HT∥MP,由①的結論得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行線性質得∠ENQ+∠ENH+∠NHT=180°,由角平分線性質及鄰補角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.繼續(xù)使用等量代換可得∠ENQ度數.【詳解】解:(1)證明:過點E作EP∥AB交MH于點Q.如答圖1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=∠GND.(兩直線平行,內錯角相等)∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:過點H作GI∥AB.如答圖2由(1)可得∠MEN=(∠BMH+∠HND),由圖可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案為:2∠MEN+∠MHN=360°.②:由①的結論得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.過點H作HT∥MP.如答圖2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(兩直線平行,同旁內角互補).∵MP平分∠AMH,∴∠PMH=∠AMH=(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.∵∠ENH=∠HND.∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°.∴∠ENQ+(HND+∠BMH)=130°.∴∠ENQ+∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【點睛】本題考查了平行線的性質,角平分線的性質,鄰補角,等量代換,角之間的數量關系運算,輔助線的作法,正確作出輔助線是解題的關鍵,本題綜合性較強.3.(1)見解析;(2)見解析;(3).【分析】(1)先根據平行線的性質得到,然后結合即可證明;(2)過作,先說明,然后再說明得到,最后運用等量代換解答即可;(3)設∠DBE=a,則∠BFC=3解析:(1)見解析;(2)見解析;(3).【分析】(1)先根據平行線的性質得到,然后結合即可證明;(2)過作,先說明,然后再說明得到,最后運用等量代換解答即可;(3)設∠DBE=a,則∠BFC=3a,根據角平分線的定義可得∠ABD=∠C=2a,∠FBC=∠DBC=a+45°,根據三角形內角和可得∠BFC+∠FBC+∠BCF=180°,可得∠AFC=∠BCF的度數表達式,再根據平行的性質可得∠AFC+∠NCF=180°,代入即可算出a的度數,進而完成解答.【詳解】(1)證明:∵,∴,∵于,∴,∴,∴;(2)證明:過作,∵,∴,又∵,∴,∴,∵,∴,∴,∴;(3)設∠DBE=a,則∠BFC=3a,∵BE平分∠ABD,∴∠ABD=∠C=2a,又∵AB⊥BC,BF平分∠DBC,∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=∠DBC=a+45°又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°∴∠BCF=135°-4a,∴∠AFC=∠BCF=135°-4a,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【點睛】本題主要考查了平行線的性質、角平分線的性質及角的計算,熟練應用平行線的性質、角平分線的性質是解答本題的關鍵.4.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②見解析【分析】(1)根據鄰補角的定義和平行線的性質解答;(2)①根據鄰補角的定義求出∠ABE,再根據兩直線平行,同位角相解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②見解析【分析】(1)根據鄰補角的定義和平行線的性質解答;(2)①根據鄰補角的定義求出∠ABE,再根據兩直線平行,同位角相等可得∠1=∠ABE,根據兩直線平行,同旁內角互補求出∠BCG,然后根據周角等于360°計算即可得到∠2;②結合圖形,分AB、BC、AC三條邊與直尺垂直討論求解.【詳解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案為:120,90;(2)①如圖2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②當n=30°時,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);當n=90°時,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);當n=120°時,∴AB⊥DE(GF).【點睛】本題考查了平行線角的計算,垂線的定義,主要利用了平行線的性質,直角三角形的性質,讀懂題目信息并準確識圖是解題的關鍵.5.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依據平行線的性質以及角平分線的定義,即可得到∠PCG的度數;(2)依據平行線的性質以及角平分線的定義,即可得到∠ECG=∠G解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依據平行線的性質以及角平分線的定義,即可得到∠PCG的度數;(2)依據平行線的性質以及角平分線的定義,即可得到∠ECG=∠GCF=25°,再根據PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)設∠EGC=4x,∠EFC=3x,則∠GCF=4x-3x=x,分兩種情況討論:①當點G、F在點E的右側時,②當點G、F在點E的左側時,依據等量關系列方程求解即可.【詳解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)設∠EGC=4x,∠EFC=3x,則∠GCF=∠FCD=4x-3x=x,①當點G、F在點E的右側時,則∠ECG=x,∠PCF=∠PCD=x,∵∠ECD=80°,∴x+x+x+x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+x=56°;②當點G、F在點E的左側時,則∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【點睛】本題主要考查了平行線的性質,解題時注意:兩直線平行,同旁內角互補;兩直線平行,內錯角相等.二、解答題6.(1)平行,理由見解析;(2)35°或145°,畫圖、過程見解析;(3)50°或130°或60°或120°【分析】(1)過點C作CF∥AB,根據∠B=50°,∠C=85°,∠D=35°,即可得C解析:(1)平行,理由見解析;(2)35°或145°,畫圖、過程見解析;(3)50°或130°或60°或120°【分析】(1)過點C作CF∥AB,根據∠B=50°,∠C=85°,∠D=35°,即可得CF∥ED,進而可以判斷AB平行于ED;(2)根據題意作AB∥CD,即可∠B=∠C=35°;(3)分別畫圖,根據平行線的性質計算出∠B的度數.【詳解】解:(1)AB平行于ED,理由如下:如圖2,過點C作CF∥AB,∴∠BCF=∠B=50°,∵∠BCD=85°,∴∠FCD=85°-50°=35°,∵∠D=35°,∴∠FCD=∠D,∴CF∥ED,∵CF∥AB,∴AB∥ED;(2)如圖,即為所求作的圖形.∵AB∥CD,∴∠ABC=∠C=35°,∴∠B的度數為:35°;∵A′B∥CD,∴∠ABC+∠C=180°,∴∠B的度數為:145°;∴∠B的度數為:35°或145°;(3)如圖2,過點C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠FCD=∠D=35°,∵∠BCD=85°,∴∠BCF=85°-35°=50°,∴∠B=∠BCF=50°.答:∠B的度數為50°.如圖5,過C作CF∥AB,則AB∥CF∥CD,∴∠FCD=∠D=35°,∵∠BCD=85°,∴∠BCF=85°-35°=50°,∵AB∥CF,∴∠B+∠BCF=180°,∴∠B=130°;如圖6,∵∠C=85°,∠D=35°,∴∠CFD=180°-85°-35°=60°,∵AB∥DE,∴∠B=∠CFD=60°,如圖7,同理得:∠B=35°+85°=120°,綜上所述,∠B的度數為50°或130°或60°或120°.【點睛】本題考查了平行線的判定與性質,解決本題的關鍵是區(qū)分平行線的判定與性質,并熟練運用.7.(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結論;(2)易得∠AON的度數,由兩條角平分線,可得∠DON,∠OCF的度數,也解析:(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結論;(2)易得∠AON的度數,由兩條角平分線,可得∠DON,∠OCF的度數,也易得∠COE的度數,由三角形外角的性質即可求得∠OEF的度數;(3)不變,分三種情況討論即可.【詳解】(1)∵,,且∴,∴m=20,n=70∴∠MOC=90゜-∠AOM=70゜∴∠MOC=∠OCQ=70゜∴MN∥PQ(2)∵∠AON=180゜-∠AOM=160゜又∵平分,平分∴,∵∴∴∠OEF=∠OCF+∠COE=35゜+10゜=45゜故答案為:45.(3)不變,理由如下:如圖,當0゜<α<20゜時,∵CF平分∠OCQ∴∠OCF=∠QCF設∠OCF=∠QCF=x則∠OCQ=2x∵MN∥PQ∴∠MOC=∠OCQ=2x∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON∴∠DON=45゜+x∵∠MOE=∠DON=45゜+x∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜當α=20゜時,OD與OB共線,則∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜當20゜<α<90゜時,如圖∵CF平分∠OCQ∴∠OCF=∠QCF設∠OCF=∠QCF=x則∠OCQ=2x∵MN∥PQ∴∠NOC=180゜-∠OCQ=180゜-2x∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON∴∠AOE=135゜-x∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜綜上所述,∠EOF的度數不變.【點睛】本題主要考查了角平分線的定義,平行線的判定與性質,角的和差關系,注意分類討論,引入適當的量便于運算簡便.8.(1)∠PAF+∠PBN+∠APB=360°;(2)①,見解析;②或【分析】(1)作PC∥EF,如圖1,由PC∥EF,EF∥MN得到PC∥MN,根據平行線的性質得∠PAF+∠APC=180°,∠解析:(1)∠PAF+∠PBN+∠APB=360°;(2)①,見解析;②或【分析】(1)作PC∥EF,如圖1,由PC∥EF,EF∥MN得到PC∥MN,根據平行線的性質得∠PAF+∠APC=180°,∠PBN+∠CPB=180°,即有∠PAF+∠PBN+∠APB=360°;(2)①過P作PE∥AD交ON于E,根據平行線的性質,可得到,,于是;②分兩種情況:當P在OB之間時;當P在OA的延長線上時,仿照①的方法即可解答.【詳解】解:(1)∠PAF+∠PBN+∠APB=360°,理由如下:作PC∥EF,如圖1,∵PC∥EF,EF∥MN,∴PC∥MN,∴∠PAF+∠APC=180°,∠PBN+∠CPB=180°,∴∠PAF+∠APC+∠PBN+∠CPB=360°,∴∠PAF+∠PBN+∠APB=360°;(2)①,理由如下:如答圖,過P作PE∥AD交ON于E,∵AD∥BC,∴PE∥BC,∴,,∴②當P在OB之間時,,理由如下:如備用圖1,過P作PE∥AD交ON于E,∵AD∥BC,∴PE∥BC,∴,,∴;當P在OA的延長線上時,,理由如下:如備用圖2,過P作PE∥AD交ON于E,∵AD∥BC,∴PE∥BC,∴,,∴;綜上所述,∠CPD,∠α,∠β之間的數量關系是或.【點睛】本題考查了平行線的性質:兩直線平行,同位角相等,內錯角相等,同旁內角互補.難點是分類討論作平行輔助線.9.(1)①見解析;②;見解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根據題意畫出圖形;②依據DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠解析:(1)①見解析;②;見解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根據題意畫出圖形;②依據DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠A+∠AFD=180°,進而得出∠EDF=∠A;(2)①過G作GH∥AB,依據平行線的性質,即可得到∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②過G作GH∥AB,依據平行線的性質,即可得到∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【詳解】解:(1)①如圖,②∵DE∥AB,DF∥AC,∴∠EDF+∠AFD=180°,∠A+∠AFD=180°,∴∠EDF=∠A;(2)①∠AFG+∠EDG=∠DGF.如圖2所示,過G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②∠AFG-∠EDG=∠DGF.如圖所示,過G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【點睛】本題考查了平行線的判定和性質:兩直線平行,內錯角相等.正確的作出輔助線是解題的關鍵.10.(1)證明見解析;(2)(Ⅰ);(Ⅱ).【分析】(1)先根據平行線的性質可得,再根據角的和差可得,然后根據平行線的判定即可得證;(2)(Ⅰ)先根據平行線的性質可得,從而可得,再根據角的和差可得解析:(1)證明見解析;(2)(Ⅰ);(Ⅱ).【分析】(1)先根據平行線的性質可得,再根據角的和差可得,然后根據平行線的判定即可得證;(2)(Ⅰ)先根據平行線的性質可得,從而可得,再根據角的和差可得,然后根據即可得;(Ⅱ)設,從而可得,先根據角平分線的定義可得,再根據角的和差可得,然后根據建立方程可求出x的值,從而可得的度數,最后根據平行線的性質即可得.【詳解】(1),,又,,;(2)(Ⅰ),,,,由(1)已得:,,;(Ⅱ)設,則,平分,,,,,由(1)已得:,,即,解得,,又,.【點睛】本題考查了平行線的判定與性質、角的和差、角平分線的定義、一元一次方程的幾何應用等知識點,熟練掌握平行線的判定與性質是解題關鍵.三、解答題11.(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BA解析:(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BAQ與∠ABQ的和,最后在△ABQ中,根據三角形的內角各定理可求∠AQB的大?。?2)題求∠P的大小,用鄰補角、角平分線、平角、直角和三角形內角和定理等知識求解.【詳解】解:(1)∠AQB的大小不發(fā)生變化,如圖1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分別是∠BAO和∠ABO的角平分線,∴∠BAQ=∠BAC,∠ABQ=∠ABO,∴∠BAQ+∠ABQ=(∠ABO+∠BAO)=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如圖2所示:①∠P的大小不發(fā)生變化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分別是∠BAE和∠ABP的角平分線,∴∠PAB=∠EAB,∠PBA=∠ABF,∴∠PAB+∠PBA=(∠EAB+∠ABF)=×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不變,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=∠ABO,∠PBA=∠PBF=∠ABF,∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【點睛】本題考查三角形內角和定理,垂直,角平分線,平角,直角和角的和差等知識點,同時,也是一個以靜求動的一個點型題目,有益于培養(yǎng)學生的思維幾何綜合題.12.(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點的“8字形”有1個,以O為交點的“8字形”有2個;(2)根據角平分線的定義得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點的“8字形”有1個,以O為交點的“8字形”有2個;(2)根據角平分線的定義得到∠CAP=∠BAP,∠BDP=∠CDP,再根據三角形內角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,兩等式相減得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入計算即可;(3)與(2)的證明方法一樣得到∠P=(2∠C+∠B).(4)根據三角形內角與外角的關系可得∠B+∠A=∠1,∠C+∠D=∠2,再根據四邊形內角和為360°可得答案.【詳解】解:(1)在圖2中有3個以線段AC為邊的“8字形”,故答案為3;(2)∵∠CAB和∠BDC的平分線AP和DP相交于點P,∴∠CAP=∠BAP,∠BDP=∠CDP,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),∵∠C=100°,∠B=96°∴∠P=(100°+96°)=98°;(3)∠P=(β+2α);理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠BAC,∠BDP=∠BDC,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,∴2(∠C﹣∠P)=∠P﹣∠B,∴∠P=(∠B+2∠C),∵∠C=α,∠B=β,∴∠P=(β+2α);(4)∵∠B+∠A=∠1,∠C+∠D=∠2,∴∠A+∠B+∠C+∠D=∠1+∠2,∵∠1+∠2+∠F+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案為360°.13.(1)60,30;(2)∠BAD=2∠CDE,證明見解析;(3)成立,∠BAD=2∠CDE,證明見解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,證明見解析;(3)成立,∠BAD=2∠CDE,證明見解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形內角和定理求出∠ABC=∠ACB=40°,根據三角形外角的性質得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形內角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如圖②,在△ABC和△ADE中利用三角形內角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根據三角形外角的性質得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,從而得出結論∠BAD=2∠CDE;(3)如圖③,在△ABC和△ADE中利用三角形內角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根據三角形外角的性質得出∠CDE=∠ACD-∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,從而得出結論∠BAD=2∠CDE.【詳解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案為60,30.(2)∠BAD=2∠CDE,理由如下:如圖②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-=,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如圖③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-=,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【點睛】本題考查了三角形內角和定理,三角形外角的性質,從圖形中得出相關角度之間的關系是解題的關鍵.14.(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長AC、CD交GH于點E、F,先根據角平分線求得,再根據平行線的性質得到;進一步求得,,然后根據三角形外角的性質解答即可;(3)設BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過O作OP//MN,∵MN//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠N
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 項目推廣演講致辭稿
- 個人車輛掛靠租賃公司協(xié)議書
- 2025年柳州a2貨運從業(yè)資格證模擬考試題
- 2025年南京貨運從業(yè)資格證考試模擬考試題庫答案大全
- 小學英語試卷聽力稿
- 書籍設計印刷合同范本文檔
- 個體診所自查報告
- 廈門落戶中介合同范本
- 業(yè)務員個人年度工作總結
- 三年級語文備課組工作總結
- 信息安全意識培訓課件
- 社團活動情況登記表
- 基本樂理及音樂常識類知識考試題及答案
- 山東省濰坊市2023-2024學年高二下學期期末測試+英語試卷
- 2023年北京市初三一模數學試題匯編:選擇壓軸(第8題)
- AIGC視域下非遺文創(chuàng)產品的數字化轉型升級路徑研究
- 生涯規(guī)劃與就業(yè)創(chuàng)業(yè)全套課件電子教案板
- 公司投資占股協(xié)議書模板
- 石油采油井場水土保持方案報告書
- 2024-2030年中國護眼臺燈行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 五下音樂《美麗的家鄉(xiāng)(簡譜、五線譜)》課件
評論
0/150
提交評論