云南省江川二中2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
云南省江川二中2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
云南省江川二中2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
云南省江川二中2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
云南省江川二中2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

云南省江川二中2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)在區(qū)間(0,e)上的極小值為()A.-e B.1-eC.-1 D.12.已知,則()A. B.C. D.3.在長方體中,,,分別是棱,的中點(diǎn),則異面直線,的夾角為()A. B.C. D.4.如圖,在長方體中,若,,則異面直線和所成角的余弦值為()A. B.C. D.5.下列雙曲線中,漸近線方程為的是A. B.C. D.6.已知點(diǎn),是橢圓:的左、右焦點(diǎn),是的左頂點(diǎn),點(diǎn)在過且斜率為的直線上,為等腰三角形,且,則的離心率為()A. B.C. D.7.直線且的傾斜角為()A. B.C. D.8.已知隨機(jī)變量服從正態(tài)分布,若,則()A.0.2 B.0.24C.0.28 D.0.329.等差數(shù)列中,,則前項(xiàng)的和()A. B.C. D.10.直線在y軸上的截距是A. B.C. D.11.在中,角、、的對邊分別是、、,若.則的大小為()A. B.C. D.12.已知橢圓的左、右焦點(diǎn)分別為、,點(diǎn)A是橢圓短軸的一個頂點(diǎn),且,則橢圓的離心率()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.狄利克雷是十九世紀(jì)德國杰出的數(shù)學(xué)家,對數(shù)論、數(shù)學(xué)分析和數(shù)學(xué)物理有突出貢獻(xiàn).狄利克雷曾提出了“狄利克雷函數(shù)”.若,根據(jù)“狄利克雷函數(shù)”可求___________.14.橢圓的左、右焦點(diǎn)分別為,,過焦點(diǎn)的直線交該橢圓于兩點(diǎn),若的內(nèi)切圓面積為,兩點(diǎn)的坐標(biāo)分別為,,則的面積________,的值為________.15.已知平面向量均為非零向量,且滿足,記向量在向量上投影向量為,則k=______.(用數(shù)字作答)16.直線與圓交于A、B兩點(diǎn),當(dāng)弦AB的長度最短時,則三角形ABC的面積為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,直線的斜率為2,且過點(diǎn)(1)判斷與的位置關(guān)系;(2)若圓,求圓與圓的公共弦長18.(12分)已知橢圓F:經(jīng)過點(diǎn)且離心率為,直線和是分別過橢圓F的左、右焦點(diǎn)的兩條動直線,它們與橢圓分別相交于點(diǎn)A、B和C、D,O為坐標(biāo)原點(diǎn),直線AB和直線CD相交于M.記直線的斜率分別為,且(1)求橢圓F標(biāo)準(zhǔn)方程(2)是否存在定點(diǎn)P,Q,使得為定值.若存在,請求出P、Q的坐標(biāo),若不存在,請說明理由19.(12分)已知拋物線的焦點(diǎn)為F,直線l交拋物線于不同的A、B兩點(diǎn).(1)若直線l的方程為,求線段AB的長;(2)若直線l經(jīng)過點(diǎn)P(-1,0),點(diǎn)A關(guān)于x軸的對稱點(diǎn)為A',求證:A'、F、B三點(diǎn)共線.20.(12分)已知數(shù)列是等差數(shù)列,且,.(1)若數(shù)列中依次取出第2項(xiàng),第4項(xiàng),第6項(xiàng),…,第項(xiàng),按原來順序組成一個新數(shù)列,試求出數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和.21.(12分)在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,點(diǎn)D是BC的中點(diǎn);(I)求異面直線A1B,AC1所成角的余弦值;(II)求直線AB1與平面C1AD所成角的正弦值22.(10分)已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,且的面積為(為坐標(biāo)原點(diǎn))(1)求拋物線的標(biāo)準(zhǔn)方程;(2)點(diǎn)、是拋物線上異于原點(diǎn)的兩點(diǎn),直線、的斜率分別為、,若,求證:直線恒過定點(diǎn)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】求導(dǎo)判斷函數(shù)的單調(diào)性即可求解【詳解】的定義域?yàn)?0,+∞),,令,得x=1,當(dāng)x∈(0,1)時,,單調(diào)遞減,當(dāng)x∈(1,e)時,,單調(diào)遞增,故在x=1處取得極小值.故選:D.2、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)公式及求導(dǎo)法則求導(dǎo)函數(shù)即可.【詳解】.故選:B.3、C【解析】設(shè)出長度,建立空間直角坐標(biāo)系,根據(jù)向量求異面直線所成角即可.【詳解】如下圖所示,以,,所在直線方向,,軸,建立空間直角坐標(biāo)系,設(shè),,,,,,所以,,設(shè)異面直線,的夾角為,所以,所以,即異面直線,的夾角為.故選:C.4、D【解析】根據(jù)長方體中,異面直線和所成角即為直線和所成角,再結(jié)合余弦定理即可求解.【詳解】解:連接、,如下圖所示由圖可知,在長方體中,且,所以,所以異面直線和所成角即為,又,,由余弦定理可得∶故選:D.5、A【解析】由雙曲線的漸進(jìn)線的公式可行選項(xiàng)A的漸進(jìn)線方程為,故選A.考點(diǎn):本題主要考查雙曲線的漸近線公式.6、D【解析】設(shè),先求出點(diǎn),得,化簡即得解【詳解】由題意可知橢圓的焦點(diǎn)在軸上,如圖所示,設(shè),則,∵為等腰三角形,且,∴.過作垂直軸于點(diǎn),則,∴,,即點(diǎn).∵點(diǎn)在過點(diǎn)且斜率為的直線上,∴,解得,∴.故選:D【點(diǎn)睛】方法點(diǎn)睛:求橢圓的離心率常用的方法有:(1)公式法(求出橢圓的代入離心率的公式即得解);(2)方程法(通過已知找到關(guān)于離心率的方程解方程即得解).7、C【解析】由直線方程可知其斜率,根據(jù)斜率和傾斜角關(guān)系可得結(jié)果.【詳解】直線方程可化為:,直線的斜率,直線的傾斜角為.故選:C.8、C【解析】依據(jù)正態(tài)曲線的對稱性即可求得【詳解】由隨機(jī)變量服從正態(tài)分布,可知正態(tài)曲線的對稱軸為直線由,可得則,故故選:C9、D【解析】利用等差數(shù)列下標(biāo)和性質(zhì)可求得,根據(jù)等差數(shù)列求和公式可求得結(jié)果.【詳解】數(shù)列為等差數(shù)列,,解得:;.故選:D.10、D【解析】在y軸上的截距只需令x=0求出y的值即可得出.【詳解】令x=0,則y=-2,即直線在y周上的截距為-2,故選D.11、B【解析】利用余弦定理結(jié)合角的范圍可求得角的值,再利用三角形的內(nèi)角和定理可求得的值.【詳解】因?yàn)?,則,則,由余弦定理可得,因?yàn)?,則,故.故選:B.12、D【解析】依題意,不妨設(shè)點(diǎn)A的坐標(biāo)為,在中,由余弦定理得,再根據(jù)離心率公式計(jì)算即可.【詳解】設(shè)橢圓的焦距為,則橢圓的左焦點(diǎn)的坐標(biāo)為,右焦點(diǎn)的坐標(biāo)為,依題意,不妨設(shè)點(diǎn)A的坐標(biāo)為,在中,由余弦定理得:,,,,解得.故選:D.【點(diǎn)睛】本題考查橢圓幾何性質(zhì),在中,利用余弦定理求得是關(guān)鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】由“狄利克雷函數(shù)”解析式,先求出,再根據(jù)指數(shù)函數(shù)的解析式求即可.【詳解】由題設(shè),,則.故答案:114、①.6②.3【解析】由題意得,由內(nèi)切圓面積為可得其半徑,根據(jù)焦點(diǎn)三角形面積公式可得第一空答案,結(jié)合面積公式和等面積法建立等式化簡即可.【詳解】解:由得由內(nèi)切圓面積為可得其半徑,設(shè)其內(nèi)切圓圓心為則又所以.故答案為:6;3【點(diǎn)睛】橢圓中常用面積公式:(1)(表示邊上的高);(2);(3)(為三角形內(nèi)切圓半徑);(4).15、##1.5【解析】由兩邊平方可得,,,設(shè),向量是以向量為鄰邊的平行四邊形、有共同起點(diǎn)的對角線,,由余弦定理可得,向量在向量上投影向量為,化簡可得答案.【詳解】因?yàn)?,所以,,兩邊平方整理得,,兩邊平方整理得,即,可得,,設(shè),所以向量是以向量為鄰邊的平行四邊形、有共同起點(diǎn)的對角線,如圖,即,因?yàn)?,,平行四邊形即為的菱形,所以,由余弦定理可得,可得,,向量在向量上投影向量為,?故答案為:.16、【解析】由于直線過定點(diǎn),所以當(dāng)時,弦AB的長度最短,然后先求出的長,再利用勾股定理可求出的長,從而可求出三角形ABC的面積【詳解】因?yàn)橹本€恒過定點(diǎn),圓的圓心,半徑為,所以當(dāng)時,弦AB的長度最短,因?yàn)椋裕匀切蜛BC的面積為,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)與相切;(2)【解析】(1)求出圓C的圓心坐標(biāo),半徑和直線l的方程,根據(jù)圓心到直線的距離即可判斷直線與圓的位置關(guān)系;(2)圓與圓的方程相減,可求出公共弦所在的直線方程,然后根據(jù)圓M的圓心到公共弦所在直線的距離及圓M的半徑即可求出公共弦長.【小問1詳解】由圓,可得,所以圓心為,半徑,直線的方程為,即因?yàn)閳A心到的距離為,所以與相切【小問2詳解】聯(lián)立方程可得,作差可得,即,即公共弦所在直線的方程為易知圓的半徑,圓心到直線的距離為,則公共弦長18、(1);(2)存在點(diǎn),使得為定值.【解析】(1)設(shè),,,結(jié)合條件即求;(2)由題可設(shè)直線方程,利用韋達(dá)定理法可得,再結(jié)合條件可得點(diǎn)的軌跡方程為,然后利用橢圓的定義即得結(jié)論.【小問1詳解】設(shè),,,橢圓方程為:,橢圓過點(diǎn),,解得t=1,所以橢圓F的方程是【小問2詳解】由題可得焦點(diǎn)的坐標(biāo)分別為,當(dāng)直線AB或CD的斜率不存在時,點(diǎn)M的坐標(biāo)為或,當(dāng)直線AB和CD的斜率都存在時,設(shè)斜率分別為,點(diǎn),直線AB為,聯(lián)立,得則,,同理可得,,因?yàn)?,所以,化簡得由題意,知,所以設(shè)點(diǎn),則,所以,化簡得,當(dāng)直線或的斜率不存在時,點(diǎn)M的坐標(biāo)為或,也滿足此方程所以點(diǎn)在橢圓上,根據(jù)橢圓定義可知,存在定點(diǎn),使得為定值【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的關(guān)鍵是利用韋達(dá)定理法及題設(shè)條件求出點(diǎn)M的軌跡方程,再結(jié)合橢圓的定義,從而問題得到解決.19、(1)8;(2)證明見解析.【解析】(1)聯(lián)立直線與拋物線方程,應(yīng)用韋達(dá)定理及弦長公式求線段AB的長;(2)設(shè)為,聯(lián)立拋物線由韋達(dá)定理可得,,應(yīng)用兩點(diǎn)式判斷是否為0即可證結(jié)論.【小問1詳解】由題設(shè),聯(lián)立直線與拋物線方程可得,則,,∴,,所以.【小問2詳解】由題設(shè),,又直線l經(jīng)過點(diǎn)P(-1,0),此時直線斜率必存在且不為0,可設(shè)為,聯(lián)立拋物線得:,則,,又,故,而,所以,所以A'、F、B三點(diǎn)共線.20、(1),;(2).【解析】(1)利用等差數(shù)列性質(zhì)求出數(shù)列公差及通項(xiàng)公式,由求解作答.(2)由(1)的結(jié)論求出,再用錯位相減法計(jì)算作答.【小問1詳解】等差數(shù)列中,,解得,公差,則,因此,,依題意,,所以數(shù)列的通項(xiàng)公式,.【小問2詳解】由(1)知,,則,因此,,,所以.21、(I)(II)【解析】(I)以,,為x,y,z軸建立空間直角坐標(biāo)系A(chǔ)﹣xyz,可得和的坐標(biāo),可得cos<,>,可得答案;(II)由(I)知,=(2,0,﹣4),=(1,1,0),設(shè)平面C1AD的法向量為=(x,y,z),由可得=(1,﹣1,),設(shè)直線AB1與平面C1AD所成的角為θ,則sinθ=|cos<,>|=,進(jìn)而可得答案解:(I)以,,x,y,z軸建立空間直角坐標(biāo)系A(chǔ)﹣xyz,則可得B(2,0,0),A1(0,0,4),C1(0,2,4),D(1,1,0),∴=(2,0,﹣4),=(0,2,4),∴cos<,>==∴異面直線A1B,AC1所成角的余弦值為:;(II)由(I)知,=(2,0,﹣4),=(1,1,0),設(shè)平面C1AD的法向量為=(x,y,z),則可得,即,取x=1可得=(1,﹣1,),設(shè)直線AB1與平面C1AD所成的角為θ,則sinθ=|cos<,>|=∴直線AB1與平面C1AD所成角的正弦值為:考點(diǎn):異面直線及其所成的角;直線與平面所成的角22、(1);(2)證明見解析.【解析】(1)由點(diǎn)在拋物線上可得出,再利用三角形的面積

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論