版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
新疆昌吉州第二中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.中秋節(jié)吃月餅是我國(guó)的傳統(tǒng)習(xí)俗,若一盤中共有兩種月餅,其中5塊五仁月餅、6塊棗泥月餅,現(xiàn)從盤中任取3塊,在取到的都是同種月餅的條件下,都是五仁月餅的概率是()A B.C. D.2.與的等差中項(xiàng)是()A. B.C. D.3.命題“?x∈[1,2],x2-a≤0”為真命題的一個(gè)充分不必要條件是()A.a≥4 B.a≤4C.a≥5 D.a≤54.已知函數(shù),則()A.3 B.C. D.5.甲、乙兩組數(shù)的數(shù)據(jù)如莖葉圖所示,則甲、乙的平均數(shù)、方差、極差及中位數(shù)相同的是()A.極差 B.方差C.平均數(shù) D.中位數(shù)6.太極圖被稱為“中華第一圖”,閃爍著中華文明進(jìn)程的光輝,它是由黑白兩個(gè)魚(yú)形紋組成的圖案,俗稱陰陽(yáng)魚(yú),太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相對(duì)統(tǒng)一的和諧美.定義:能夠?qū)AO的周長(zhǎng)和面積同時(shí)等分成兩個(gè)部分的函數(shù)稱為圓O的一個(gè)“太極函數(shù)”,設(shè)圓O:,則下列說(shuō)法中正確的是()①函數(shù)是圓O的一個(gè)太極函數(shù)②圓O的所有非常數(shù)函數(shù)的太極函數(shù)都不能為偶函數(shù)③函數(shù)是圓O的一個(gè)太極函數(shù)④函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱是為圓O的太極函數(shù)的充要條件A.①② B.①③C.②③ D.③④7.已知橢圓的右焦點(diǎn)為,則正數(shù)的值是()A.3 B.4C.9 D.218.已知是拋物線上的一個(gè)動(dòng)點(diǎn),是圓上的一個(gè)動(dòng)點(diǎn),是一個(gè)定點(diǎn),則的最小值為A. B.C. D.9.已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)是橢圓上的一點(diǎn),點(diǎn)是線段的中點(diǎn),為坐標(biāo)原點(diǎn),若,則()A.3 B.4C.6 D.1110.在x軸與y軸上截距分別為,2的直線的傾斜角為()A.45° B.135°C.90° D.180°11.已知等差數(shù)列{an}中,a4+a9=8,則S12=()A.96 B.48C.36 D.2412.已知圓的方程為,則實(shí)數(shù)m的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從雙曲線上一點(diǎn)作軸的垂線,垂足為,則線段中點(diǎn)的軌跡方程為_(kāi)__________.14.在棱長(zhǎng)為2的正方體中,點(diǎn)P是直線上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q在平面上,則的最小值為_(kāi)_______.15.已知拋物線的焦點(diǎn)為F,A為拋物線C上一點(diǎn).以F為圓心,F(xiàn)A為半徑的圓交拋物線C的準(zhǔn)線于B,D兩點(diǎn),A,F(xiàn),B三點(diǎn)共線,且,則______16.記為等差數(shù)列{}的前n項(xiàng)和,若,,則=_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知:,橢圓,雙曲線.(1)若的離心率為,求的離心率;(2)當(dāng)時(shí),過(guò)點(diǎn)的直線與的另一個(gè)交點(diǎn)為,與的另一個(gè)交點(diǎn)為,若恰好是的中點(diǎn),求直線的方程.18.(12分)在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,,平面平面,且(1)求證:平面;(2)求平面與平面夾角的余弦值19.(12分)已知橢圓與橢圓有共同的焦點(diǎn),且橢圓經(jīng)過(guò)點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)為橢圓的左焦點(diǎn),為橢圓上任意一點(diǎn),為坐標(biāo)原點(diǎn),求的最小值.20.(12分)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)求的單調(diào)區(qū)間;21.(12分)已知數(shù)列滿足,,,.從①,②這兩個(gè)條件中任選一個(gè)填在橫線上,并完成下面問(wèn)題.(1)寫(xiě)出、,并求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.22.(10分)如圖,ABCD是邊長(zhǎng)為2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF=2(1)證明:AC∥平面BEF;(2)求點(diǎn)C到平面BEF的距離
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】分別求出取到3塊月餅都是同種月餅和取到3塊月餅都是五仁月餅的種數(shù),再根據(jù)概率公式即可得解.【詳解】解:由題意可得,取到3塊月餅都是同種月餅有種情況,取到3塊月餅都是五仁月餅有種情況,所以在取到的都是同種月餅的條件下,都是五仁月餅的概率是.故選:C.2、A【解析】代入等差中項(xiàng)公式即可解決.【詳解】與的等差中項(xiàng)是故選:A3、C【解析】先要找出命題為真命題的充要條件,從集合的角度充分不必要條件應(yīng)為的真子集,由選擇項(xiàng)不難得出答案【詳解】命題“?x∈[1,2],x2-a≤0”為真命題,可化為?x∈[1,2],恒成立即只需,即命題“?x∈[1,2],x2-a≤0”為真命題的的充要條件為,而要找的一個(gè)充分不必要條件即為集合的真子集,由選擇項(xiàng)可知C符合題意.故選:C4、B【解析】由導(dǎo)數(shù)運(yùn)算法則求出導(dǎo)發(fā)函數(shù),然后可得導(dǎo)數(shù)值【詳解】由題意,所以故選:B5、C【解析】根據(jù)莖葉圖依次計(jì)算甲和乙的平均數(shù)、方差、中位數(shù)和極差即可得到結(jié)果.【詳解】甲的平均數(shù)為:;乙的平均數(shù)為:;甲和乙的平均數(shù)相同;甲的方差為:;乙的方差為:;甲和乙的方差不相同;甲的極差為:;乙的極差為:;甲和乙的極差不相同;甲的中位數(shù)為:;乙的中位數(shù)為:;甲和乙的中位數(shù)不相同.故選:C.6、B【解析】①③可以通過(guò)分析奇偶性和結(jié)合圖象證明出符合要求,②④可以舉出反例.【詳解】是奇函數(shù),且與圓O的兩交點(diǎn)坐標(biāo)為,能夠?qū)AO的周長(zhǎng)和面積同時(shí)等分為兩個(gè)部分,故符合題意,①正確;同理函數(shù)是圓O的一個(gè)太極函數(shù),③正確;例如,是偶函數(shù),也能將將圓O的周長(zhǎng)和面積同時(shí)等分為兩個(gè)部分,故②錯(cuò)誤;函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱不是為圓O的太極函數(shù)的充要條件,例如為奇函數(shù),但不滿足將圓O的周長(zhǎng)和面積同時(shí)等分為兩個(gè)部分,所以④錯(cuò)誤;故選:B7、A【解析】由直接可得.【詳解】由題知,所以,因?yàn)?,所?故選:A8、A【解析】恰好為拋物線的焦點(diǎn),等于到準(zhǔn)線的距離,要想最小,過(guò)圓心作拋物線的準(zhǔn)線的垂線交拋物線于點(diǎn),交圓于,最小值等于圓心到準(zhǔn)線的距離減去半徑4-1=.考點(diǎn):1.拋物線的定義;2.圓中的最值問(wèn)題;9、A【解析】利用橢圓的定義可得,再結(jié)合條件即求.【詳解】由橢圓的定義可知,因?yàn)?,所以,因?yàn)辄c(diǎn)分別是線段,的中點(diǎn),所以是的中位線,所以.故選:A.10、A【解析】按照斜率公式計(jì)算斜率,即可求得傾斜角.【詳解】由題意直線過(guò),設(shè)直線斜率為,傾斜角為,則,故.故選:A.11、B【解析】利用等差數(shù)列的性質(zhì)求解即可.【詳解】解:由等差數(shù)列的性質(zhì)得.故選:B12、C【解析】根據(jù)可求得結(jié)果.【詳解】因?yàn)楸硎緢A,所以,解得.故選:C【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:掌握方程表示圓的條件是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】根據(jù)題意,設(shè),進(jìn)而根據(jù)中點(diǎn)坐標(biāo)公式及點(diǎn)P已知雙曲線上求得答案.【詳解】由題意,設(shè),則,則,即,因?yàn)?,則,即的軌跡方程為.14、【解析】數(shù)形結(jié)合分析出的最小值為點(diǎn)到平面的距離,然后利用等體積法求出距離即可.【詳解】因?yàn)椋移矫?,平面,所以平面,所以的最小值為點(diǎn)到平面的距離,設(shè)到平面的距離為,則,所以,即,解得,故答案為:.15、2【解析】求得拋物線的焦點(diǎn)和準(zhǔn)線方程,由,,三點(diǎn)共線,推得,由三角形的中位線性質(zhì)可得到準(zhǔn)線的距離,可得的值【詳解】拋物線的焦點(diǎn)為,,準(zhǔn)線方程為,因?yàn)?,,三點(diǎn)共線,可得為圓的直徑,如圖示:設(shè)準(zhǔn)線交x軸于E,所以,則,由拋物線的定義可得,又是的中點(diǎn),所以到準(zhǔn)線的距離為,故答案為:216、18【解析】根據(jù)等差數(shù)列通項(xiàng)和前n項(xiàng)和公式即可得到結(jié)果.【詳解】設(shè)等差數(shù)列的公差為,由,得,解得,所以故答案為:18三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)或【解析】(1)有橢圓的離心率可以得到,的關(guān)系,在雙曲線中方程是非標(biāo)準(zhǔn)的方程,注意套公式時(shí)容易出錯(cuò).(2)聯(lián)立方程分別解得P,Q兩點(diǎn)的橫坐標(biāo),利用中點(diǎn)坐標(biāo)公式即可解得斜率值.【小問(wèn)1詳解】橢圓的離心率為,,在雙曲線中因?yàn)椋?【小問(wèn)2詳解】當(dāng)時(shí),橢圓,雙曲線.當(dāng)過(guò)點(diǎn)的直線斜率不存在時(shí),點(diǎn)P,Q恰好重合,坐標(biāo)為,所以不符合條件;當(dāng)斜率存在時(shí),設(shè)直線方程為,,聯(lián)立方程得,利用韋達(dá)定理,所以;同理聯(lián)立方程,韋達(dá)定理得,所以由于是的中點(diǎn),所以,所以,即,化簡(jiǎn)得,所以直線方程為或.18、(1)證明見(jiàn)解析(2)【解析】(1)先利用正方形和梯形的性質(zhì)證明線面平行,然后再根據(jù)線面平行證明面面平行即可(2)根據(jù)題意建立空間直角坐標(biāo)系,寫(xiě)出相關(guān)點(diǎn)的坐標(biāo)和相關(guān)的向量,然后分別求出平面與平面的一個(gè)法向量,最后求出平面與平面夾角的余弦值【小問(wèn)1詳解】四邊形是正方形,可得:又平面,平面則有:平面四邊形是梯形,可得:又平面,平面則有:平面又故平面平面【小問(wèn)2詳解】依題意知兩兩垂直,故以為原點(diǎn),所在的直線分別為軸、軸、軸,建立如圖所示的空間直角坐標(biāo)系.則有:,,,可得:,,設(shè)平面的一個(gè)法向量,則有:取,可得:設(shè)平面的一個(gè)法向量,則有:取,可得:設(shè)平面與平面的夾角為,則故平面與平面夾角的余弦值為19、(1)(2)【解析】(1)設(shè)橢圓的方程為,將點(diǎn)的坐標(biāo)代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)設(shè)點(diǎn),則,且,利用平面向量數(shù)量積的坐標(biāo)運(yùn)算結(jié)合二次函數(shù)的基本性質(zhì)可求得的最小值.【小問(wèn)1詳解】(1)由題可設(shè)橢圓的方程為,由橢圓經(jīng)過(guò)點(diǎn),可得,解得或(舍).所以,橢圓的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】解:易知,設(shè)點(diǎn),則,且,,,則,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,故的最小值為.20、(1)(2)詳見(jiàn)解析【解析】(1)分別求得和,從而得到切線方程;(2)求導(dǎo)后,令求得兩根,分別在、和三種情況下根據(jù)導(dǎo)函數(shù)的正負(fù)得到函數(shù)的單調(diào)區(qū)間.【詳解】(1),,,,又,在處的切線方程為.(2),令,解得:,.①當(dāng)時(shí),若和時(shí),;若時(shí),;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;②當(dāng)時(shí),在上恒成立,的單調(diào)遞增區(qū)間為,無(wú)單調(diào)遞減區(qū)間;③當(dāng)時(shí),若和時(shí),;若時(shí),;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;綜上所述:當(dāng)時(shí),的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無(wú)單調(diào)遞減區(qū)間;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)的幾何意義求解曲線在某一點(diǎn)處的切線方程、利用導(dǎo)數(shù)討論含參數(shù)函數(shù)的單調(diào)區(qū)間的問(wèn)題,屬于??碱}型.21、(1)條件選擇見(jiàn)解析,,,(2)【解析】(1)選①,推導(dǎo)出數(shù)列為等比數(shù)列,確定該數(shù)列的首項(xiàng)和公比,可求得,并可求得、;選②,推導(dǎo)出數(shù)列是等比數(shù)列,確定該數(shù)列的首項(xiàng)和公比,可求得,可求得,由此可得出、;(2)求得,,分為偶數(shù)、奇數(shù)兩種情況討論,結(jié)合并項(xiàng)求和法以及等比數(shù)列求和公式可求得.【小問(wèn)1詳解】解:若選①,,且,故數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,,故;若選②,,所以,,且,故數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,所以,,故,所以,,故,.【小問(wèn)2詳解】解:由(1)可知,則,所以,.當(dāng)為偶數(shù)時(shí),;當(dāng)為奇數(shù)時(shí),.綜上所述,.22、(1)證明見(jiàn)解析(2)【解析】(1)建立空間直角坐標(biāo)系,進(jìn)而求出平面BEF的法向量,然后證明線面平行;(2)算出在向量方向上的投影,進(jìn)而求得答案.【小問(wèn)1詳解】因?yàn)镈E⊥平面ABCD,DA、DC平面A
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- MPB客車相關(guān)項(xiàng)目投資計(jì)劃書(shū)
- 教育公平與資源分配研究計(jì)劃
- 影視動(dòng)畫(huà)制作委托合同三篇
- 《證券從業(yè)資格考試》課件
- 《證券定價(jià)》課件
- 《長(zhǎng)城電工解決方案》課件
- 《重要客戶服務(wù)培訓(xùn)》課件
- 【大學(xué)課件】數(shù)字程控交換技術(shù)
- 《計(jì)算公式培訓(xùn)》課件
- 主管藥師技術(shù)報(bào)告范文
- 心肺復(fù)蘇患者體溫管理
- 南京市鼓樓區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末英語(yǔ)試卷(含答案解析)
- 氧氣吸入法健康宣教
- 江蘇省南京市建鄴區(qū)重點(diǎn)中學(xué)2023-2024學(xué)年七年級(jí)上學(xué)期期末數(shù)學(xué)試題(含答案)
- 關(guān)于書(shū)香家庭閱讀情況簡(jiǎn)介【六篇】
- 心梗合并消化道出血的治療
- 建設(shè)施工三級(jí)安全教育課件
- 電能質(zhì)量技術(shù)監(jiān)督培訓(xùn)課件
- 大班音樂(lè):戲說(shuō)臉譜課件
- 2024年度國(guó)學(xué)(弟子規(guī)入則孝篇)課件
- 船舶與海洋工程導(dǎo)論(船舶的基本概念)期末單元測(cè)試與答案
評(píng)論
0/150
提交評(píng)論