山東泰安知行學(xué)校2023-2024學(xué)年高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
山東泰安知行學(xué)校2023-2024學(xué)年高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
山東泰安知行學(xué)校2023-2024學(xué)年高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
山東泰安知行學(xué)校2023-2024學(xué)年高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
山東泰安知行學(xué)校2023-2024學(xué)年高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

山東泰安知行學(xué)校2023-2024學(xué)年高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.總體由編號為的30個個體組成.利用所給的隨機數(shù)表選取6個個體,選取的方法是從隨機數(shù)表第1行的第3列和第4列數(shù)字開始,由左到右一次選取兩個數(shù)字,則選出來的第5個個體的編號為()A.20 B.26C.17 D.032.在三棱錐中,平面,,,,Q是邊上的一動點,且直線與平面所成角的最大值為,則三棱錐的外接球的表面積為()A. B.C. D.3.過點且與雙曲線有相同漸近線的雙曲線方程為()A B.C. D.4.運行如圖所示程序后,輸出的結(jié)果為()A.15 B.17C.19 D.215.過點,且斜率為2的直線方程是A. B.C. D.6.若直線過點(1,2),(4,2+),則此直線的傾斜角是()A.30° B.45°C.60° D.90°7.為發(fā)揮我市“示范性高中”的輻射帶動作用,促進教育的均衡發(fā)展,共享優(yōu)質(zhì)教育資源.現(xiàn)分派我市“示范性高中”的5名教師到,,三所薄弱學(xué)校支教,開展送教下鄉(xiāng)活動,每所學(xué)校至少分派一人,其中教師甲不能到學(xué)校,則不同分派方案的種數(shù)是()A.150 B.136C.124 D.1008.命題“,均有”的否定為()A.,均有 B.,使得C.,使得 D.,均有9.若構(gòu)成空間向量的一組基底,則下列向量不共面的是()A.,, B.,,C.,, D.,,10.已知圓,圓相交于P,Q兩點,其中,分別為圓和圓的圓心.則四邊形的面積為()A.3 B.4C.6 D.11.已知拋物線:的焦點為,為上一點且在第一象限,以為圓心,為半徑的圓交的準(zhǔn)線于,兩點,且,,三點共線,則()A.2 B.4C.6 D.812.已知命題:,,命題:,,則()A.是假命題 B.是真命題C.是真命題 D.是假命題二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線與直線交于D,E兩點,若(點O為坐標(biāo)原點)的面積為16,則拋物線的方程為______;過焦點F的直線l與拋物線交于A,B兩點,則______14.已知某地區(qū)內(nèi)貓的壽命超過10歲的概率為0.9,超過12歲的概率為0.6,那么該地區(qū)內(nèi),一只壽命超過10歲的貓的壽命超過12歲的概率為___________.15.若關(guān)于的不等式的解集為R,則的取值范圍是______.16.若正數(shù)x、y滿足,則的最小值等于________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知:,橢圓,雙曲線.(1)若的離心率為,求的離心率;(2)當(dāng)時,過點的直線與的另一個交點為,與的另一個交點為,若恰好是的中點,求直線的方程.18.(12分)在二項式的展開式中;(1)若,求常數(shù)項;(2)若第4項的系數(shù)與第7項的系數(shù)比為,求:①二項展開式中的各項的二項式系數(shù)之和;②二項展開式中各項的系數(shù)之和19.(12分)已知函數(shù).(1)當(dāng)時,求曲線在點處的切線方程;(2)若,且,討論函數(shù)的零點個數(shù).20.(12分)在中,角、、C所對的邊分別為、、,,.(1)若,求的值;(2)若的面積,求,的值.21.(12分)如圖所示,在正方體中,點,,分別是,,的中點(1)證明:;(2)求直線與平面所成角的大小22.(10分)設(shè){an}是公比為正數(shù)的等比數(shù)列a1=2,a3=a2+4(Ⅰ)求{an}的通項公式;(Ⅱ)設(shè){bn}是首項為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項和Sn

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題目要求選取數(shù)字,在30以內(nèi)的正整數(shù)符合要求,不在30以內(nèi)的不合要求,舍去,與已經(jīng)選取過重復(fù)的舍去,找到第5個個體的編號.【詳解】已知選取方法為從第一行的第3列和第4列數(shù)字開始,由左到右一次選取兩個數(shù)字,所以選取出來的數(shù)字分別為12(符合要求),13(符合要求),40(不合要求),33(不合要求),20(符合要求),38(不合要求),26(符合要求),13(與前面重復(fù),不合要求),89(不合要求),51(不合要求),03(符合要求),故選出來的第5個個體的編號為03.故選:D2、C【解析】由平面,直線與平面所成角的最大時,最小,也即最小,,由此可求得,從而得,得長,然后取外心,作,取H為的中點,使得,則易得,求出的長即為外接球半徑,從而可得面積【詳解】三棱錐中,平面,直線與平面所成角為,如圖所示;則,且的最大值是,,的最小值是,即A到的距離為,,,在中可得,又,,可得;取的外接圓圓心為,作,取H為的中點,使得,則易得,由,解得,,,,由勾股定理得,所以三棱錐的外接球的表面積是.【點睛】本題考查求球的表面積,解題關(guān)鍵是確定球的球心,三棱錐的外接球心在過各面外心且與此面垂直的直線上3、C【解析】設(shè)與雙曲線有相同漸近線的雙曲線方程為,代入點的坐標(biāo),求出的值,即可的解.【詳解】設(shè)與雙曲線有相同漸近線的雙曲線方程為,代入點,得,解得,所以所求雙曲線方程為,即故選:C.4、D【解析】根據(jù)給出的循環(huán)程序進行求解,直到滿足,輸出.【詳解】,,,,,,,,,,,,所以.故選:D5、A【解析】由直線點斜式計算出直線方程.【詳解】因為直線過點,且斜率為2,所以該直線方程為,即.故選【點睛】本題考查了求直線方程,由題意已知點坐標(biāo)和斜率,故選用點斜式即可求出答案,較為簡單.6、A【解析】求出直線的斜率,由斜率得傾斜角【詳解】由題意直線斜率為,所以傾斜角為故選:A7、D【解析】對甲所在組的人數(shù)分類討論即得解.【詳解】當(dāng)甲一個人去一個學(xué)校時,有種;當(dāng)甲所在的學(xué)校有兩個老師時,有種;當(dāng)甲所在的學(xué)校有三個老師時,有種;所以共有28+48+24=100種.故選:D【點睛】方法點睛:排列組合常用方法有:簡單問題直接法、小數(shù)問題列舉法、相鄰問題捆綁法、不相鄰問題插空法、至少問題間接法、復(fù)雜問題分類法、等概率問題縮倍法.要根據(jù)已知條件靈活選擇方法求解.8、C【解析】全稱命題的否定是特稱命題【詳解】根據(jù)全稱命題的否定是特稱命題,所以命題“,均有”的否定為“,使得”故選:C9、C【解析】根據(jù)空間向量共面的條件即可解答.【詳解】對于A,由,所以,,共面;對于B,由,所以,,共面;對于D,,所以,,共面,故選:C.10、A【解析】求得,由此求得四邊形的面積.【詳解】圓的圓心為,半徑;圓的圓心為,所以,由、兩式相減并化簡得,即直線的方程為,到直線的距離為,所以,所以四邊形的面積為.故選:A11、B【解析】根據(jù),,三點共線,結(jié)合點到準(zhǔn)線的距離為2,得到,再利用拋物線的定義求解.【詳解】如圖所示:∵,,三點共線,∴是圓的直徑,∴,軸,又為的中點,且點到準(zhǔn)線的距離為2,∴,由拋物線的定義可得,故選:B.12、C【解析】先分別判斷命題、的真假,再利用邏輯聯(lián)結(jié)詞“或”與“且”判斷命題的真假.【詳解】由題意,,所以,成立,即命題為真命題,,所以不存在,使得,即命題為假命題,所以是假命題,為真命題,所以是真命題,是假命題,是假命題,是真命題.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、①.②.1【解析】利用的面積列方程,化簡求得的值,從而求得拋物線方程.將的斜率分成存在和不存在兩種情況進行分類討論,結(jié)合根與系數(shù)關(guān)系求得.【詳解】依題意可知,,所以,解得.所以拋物線方程為.焦點,當(dāng)直線的斜率不存在時,直線的方程為,,即,此時.當(dāng)直線的斜率存在且不為時,設(shè)直線的方程為,由消去并化簡得,,設(shè),則,結(jié)合拋物線的定義可知.故答案為:;14、【解析】根據(jù)條件概率公式求解即可.【詳解】設(shè)事件A:貓的壽命超過10歲,事件B:貓的壽命超過12歲.依題意有,,則一只壽命超過10歲貓的壽命超過12歲的概率.故答案為:15、【解析】分為和考慮,當(dāng)時,根據(jù)題意列出不等式組,求出的取值范圍.【詳解】當(dāng)?shù)茫海瑵M足題意;當(dāng)時,要想保證關(guān)于的不等式的解集為R,則要滿足:,解得:,綜上:的取值范圍為故答案為:16、9【解析】把要求的式子變形為,利用基本不等式即可得結(jié)果.【詳解】因為,所以,當(dāng)且僅當(dāng)時取等號,故答案為.【點睛】本題主要考查利用基本不等式求最值,屬于難題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最小);三相等是,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)否在定義域內(nèi),二是多次用或時等號能否同時成立).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)有橢圓的離心率可以得到,的關(guān)系,在雙曲線中方程是非標(biāo)準(zhǔn)的方程,注意套公式時容易出錯.(2)聯(lián)立方程分別解得P,Q兩點的橫坐標(biāo),利用中點坐標(biāo)公式即可解得斜率值.【小問1詳解】橢圓的離心率為,,在雙曲線中因為,.【小問2詳解】當(dāng)時,橢圓,雙曲線.當(dāng)過點的直線斜率不存在時,點P,Q恰好重合,坐標(biāo)為,所以不符合條件;當(dāng)斜率存在時,設(shè)直線方程為,,聯(lián)立方程得,利用韋達(dá)定理,所以;同理聯(lián)立方程,韋達(dá)定理得,所以由于是的中點,所以,所以,即,化簡得,所以直線方程為或.18、(1)60(2)①1024;②1【解析】(1)根據(jù)二項式定理求解(2)根據(jù)二項式定理與條件求解,二項式系數(shù)之和為,系數(shù)和可賦值【小問1詳解】若,則,(,…,9)令∴∴常數(shù)項為.【小問2詳解】,(,…,),解得①②令,得系數(shù)和為19、(1).(2)答案見解析.【解析】(1)求導(dǎo)函數(shù),求得,,由此可求得曲線在點處的切線方程;(2)求得導(dǎo)函數(shù),分和討論,當(dāng)時,設(shè),求導(dǎo)函數(shù),分析導(dǎo)函數(shù)的符號,得出所令函數(shù)的單調(diào)性,從而得函數(shù)的單調(diào)性,根據(jù)零點存在定理可得答案.【小問1詳解】解:當(dāng)時,,所以,故,,所以曲線在點處的切線方程為.【小問2詳解】解:依題意,則,當(dāng)時,,所以在上單調(diào)遞增;當(dāng)時,設(shè),此時,所以在上單調(diào)遞增,又,,所以存在,使得,且在上單調(diào)遞減,在上單調(diào)遞增.綜上所述,在上單調(diào)遞減,在上單調(diào)遞增.又,所以當(dāng),即時,有唯一零點在區(qū)間上,當(dāng),即時,在上無零點;故當(dāng)時,在上有1個零點;當(dāng)時,在上無零點.20、(1)(2),【解析】(1)根據(jù)同角三角函數(shù)的基本關(guān)系求解的值,再結(jié)合正弦定理求解即可;(2)根據(jù)三角形的面積可求解出邊c的值,再運用余弦定理求解邊b.【詳解】(1),且,.由正弦定理得,.(2),.由余弦定理得,.21、(1)證明見解析(2)【解析】(1)連接,可得,從而可證四邊形是平行四邊形,從而證明結(jié)論.(2)以為坐標(biāo)原點,分別以,,所在直線為,,軸,建立空間直角坐標(biāo)系,利用向量法求解線面角.【小問1詳解】如圖,連接在正方體中,且因為,分別是,的中點,所以且又因為是的中點,所以,且,所以四邊形是平行四邊形,所以【小問2詳解】以為坐標(biāo)原點,分別以,,所在直線為,,軸,建立如圖所示的空間直角坐標(biāo)系設(shè),則,,,,,,設(shè)為平面的法向量因為,,,所以令,得設(shè)直線與平面所成角為,則因為,所以直線與平面所成角的大小為22、(Ⅰ)an=2×2n﹣1=2n(Ⅱ)2n﹣12n+1﹣2+n2=2n+1+n2﹣2【解析】(Ⅰ)由{an}是公比為正數(shù)的等比數(shù)列,設(shè)其公比,然后利用a1=2,a3=a2+4可求得q,即可求得{an}的通項公式(Ⅱ)由{bn}是首項為1,公差為2的等差數(shù)列可求得bn=1+(n﹣1)×2=2n﹣1,然后利用等比數(shù)列與等差數(shù)列的前n項和公式即可求得數(shù)列{an+bn}的前n項和Sn

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論