四川大學(xué)附中2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
四川大學(xué)附中2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
四川大學(xué)附中2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
四川大學(xué)附中2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
四川大學(xué)附中2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

四川大學(xué)附中2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,,若直線上存在點(diǎn)P,滿足,則l的傾斜角的取值范圍是()A. B.C D.2.橢圓的焦點(diǎn)坐標(biāo)為()A.和 B.和C.和 D.和3.雙曲線的離心率為,則其漸近線方程為A. B.C. D.4.已知函數(shù),在上隨機(jī)取一個實(shí)數(shù),則使得成立的概率為()A. B.C. D.5.已知雙曲線的左、右焦點(diǎn)分別為,點(diǎn)在的左支上,過點(diǎn)作的一條漸近線的垂線,垂足為,則的最小值為()A. B.C. D.6.已知數(shù)列的通項(xiàng)公式為,是數(shù)列的最小項(xiàng),則實(shí)數(shù)的取值范圍是()A. B.C. D.7.設(shè)拋物線的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),,A為垂足.如果直線AF的斜率是,那么()A B.C.16 D.88.直線的傾斜角為()A.0 B.C. D.9.某高校甲、乙兩位同學(xué)大學(xué)四年選修課程的考試成績等級(選修課的成績等級分為1,2,3,4,5,共五個等級)的條形圖如圖所示,則甲成績等級的中位數(shù)與乙成績等級的眾數(shù)分別是()A.3,5 B.3,3C.3.5,5 D.3.5,410.下列求導(dǎo)錯誤的是()A. B.C. D.11.已知是雙曲線的左焦點(diǎn),,是雙曲線右支上的動點(diǎn),則的最小值為()A.9 B.8C.7 D.612.已知數(shù)列滿足,則()A.32 B.C.1320 D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的焦點(diǎn)坐標(biāo)為________14.半徑為R的圓外接于,且,若,則面積的最大值為________.15.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進(jìn)行問卷調(diào)查.已知高一被抽取的人數(shù)為,那么高二被抽取的人數(shù)為__.16.當(dāng)曲線與直線有兩個不同的交點(diǎn)時,實(shí)數(shù)k的取值范圍是____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列的前項(xiàng)和為,數(shù)列是等比數(shù)列,,,,.(1)求數(shù)列和的通項(xiàng)公式;(2)若,設(shè)數(shù)列的前項(xiàng)和為,求.18.(12分)設(shè)數(shù)列是公比為正整數(shù)的等比數(shù)列,滿足,,設(shè)數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(3)已知數(shù)列,設(shè),求數(shù)列的前項(xiàng)和.19.(12分)在等差數(shù)列中,已知公差,前項(xiàng)和(其中)(1)求;(2)求和:20.(12分)已知橢圓C對稱中心在原點(diǎn),對稱軸為坐標(biāo)軸,且,兩點(diǎn)(1)求橢圓C的方程;(2)設(shè)M、N分別為橢圓與x軸負(fù)半軸、y軸負(fù)半軸的交點(diǎn),P為橢圓上在第一象限內(nèi)一點(diǎn),直線PM與y軸交于點(diǎn)S,直線PN與x軸交于點(diǎn)T,求證:四邊形MSTN的面積為定值21.(12分)已知拋物線的準(zhǔn)線方程是,直線與拋物線相交于M、N兩點(diǎn)(1)求拋物線的方程;(2)求弦長;(3)設(shè)O為坐標(biāo)原點(diǎn),證明:22.(10分)已知數(shù)列的首項(xiàng),,,.(1)證明:為等比數(shù)列;(2)求數(shù)列的前項(xiàng)和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)題意,求得直線恒過的定點(diǎn),數(shù)形結(jié)合只需求得線段與直線有交點(diǎn)時的斜率,結(jié)合斜率和傾斜角的關(guān)系即可求得結(jié)果.【詳解】對直線,變形為,故其恒過定點(diǎn),若直線存在點(diǎn)P,滿足,只需直線與線段有交點(diǎn)即可.數(shù)形結(jié)合可知,當(dāng)直線過點(diǎn)時,其斜率取得最大值,此時,對應(yīng)傾斜角;當(dāng)直線過點(diǎn)時,其斜率取得最小值,此時,對應(yīng)傾斜角為.根據(jù)斜率和傾斜角的關(guān)系,要滿足題意,直線的傾斜角的范圍為:.故選:A.2、D【解析】本題是焦點(diǎn)在x軸的橢圓,求出c,即可求得焦點(diǎn)坐標(biāo).【詳解】,可得焦點(diǎn)坐標(biāo)為和.故選:D3、A【解析】分析:根據(jù)離心率得a,c關(guān)系,進(jìn)而得a,b關(guān)系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.詳解:因?yàn)闈u近線方程為,所以漸近線方程為,選A.點(diǎn)睛:已知雙曲線方程求漸近線方程:.4、B【解析】首先求不等式的解集,再根據(jù)區(qū)間長度,求幾何概型的概率.【詳解】由,得,解得,在區(qū)間上隨機(jī)取一實(shí)數(shù),則實(shí)數(shù)滿足不等式的概率為故選:B5、D【解析】利用雙曲線定義可得到,將的最小值變?yōu)榈淖钚≈祮栴},數(shù)形結(jié)合得解.【詳解】由題意得,故,如圖所示:到漸近線的距離,則,當(dāng)且僅當(dāng),,三點(diǎn)共線時取等號,∴的最小值為.故選:D6、D【解析】利用最值的含義轉(zhuǎn)化為不等式恒成立問題解決即可【詳解】解:由題意可得,整理得,當(dāng)時,不等式化簡為恒成立,所以,當(dāng)時,不等式化簡為恒成立,所以,綜上,,所以實(shí)數(shù)的取值范圍是,故選:D7、D【解析】由題可得方程,進(jìn)而可得點(diǎn)坐標(biāo)及點(diǎn)坐標(biāo),利用拋物線定義即求【詳解】∵拋物線方程為,∴焦點(diǎn)F(2,0),準(zhǔn)線l方程為x=?2,∵直線AF的斜率為,直線AF的方程為,由,可得,∵PA⊥l,A為垂足,∴P點(diǎn)縱坐標(biāo)為,代入拋物線方程,得P點(diǎn)坐標(biāo)為,∴.故選:D.8、D【解析】根據(jù)斜率與傾斜角的關(guān)系求解即可.【詳解】由題的斜率,故傾斜角的正切值為,又,故.故選:D.9、C【解析】將甲的所有選修課等級從低到高排列可得甲的中位數(shù),由圖可知乙的選修課等級的眾數(shù).【詳解】由條形圖可得,甲同學(xué)共有10門選修課,將這10門選修課的成績等級從低到高排序后,第5,6門的成績等級分別為3,4,故中位數(shù)為,乙成績等級的眾數(shù)為5.故選:C.10、B【解析】根據(jù)導(dǎo)數(shù)運(yùn)算求得正確答案.【詳解】、、運(yùn)算正確.,B選項(xiàng)錯誤.故選:B11、A【解析】由雙曲線方程求出,再根據(jù)點(diǎn)在雙曲線的兩支之間,結(jié)合可求得答案【詳解】由,得,則,所以左焦點(diǎn)為,右焦點(diǎn),則由雙曲線的定義得,因?yàn)辄c(diǎn)在雙曲線的兩支之間,所以,所以,當(dāng)且僅當(dāng)三點(diǎn)共線時取等號,所以的最小值為9,故選:A12、A【解析】先令,求出,再當(dāng)時,由,可得,然后兩式相比,求出,從而可求出,進(jìn)而可求得答案【詳解】當(dāng)時,,當(dāng)時,由,可得,兩式相除可得,所以,所以,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用焦點(diǎn)坐標(biāo)為求解即可【詳解】因?yàn)?,所以,所以焦點(diǎn)的坐標(biāo)為,故答案:14、【解析】利用正弦定理將已知條件轉(zhuǎn)化為邊之間的關(guān)系,然后用余弦定理求得C;利用三角形面積公式,結(jié)合兩角差的正弦函數(shù)公式和二倍角公式得,再利用輔助角公式得,最后利用函數(shù)的值域計(jì)算得結(jié)論.【詳解】因?yàn)樗杂烧叶ɡ淼茫?,即,所以由余弦定理可得:,又,?由正弦定理得:,,所以,所以當(dāng)時,S最大,.若,則面積的最大值為.故答案為:.【點(diǎn)睛】本題考查了兩角和與差的三角函數(shù)公式,二倍角公式及應(yīng)用,正弦定理,余弦定理,三角形面積公式,函數(shù)的圖象與性質(zhì),屬于中檔題.15、【解析】利用分層抽樣可求得的值,再利用分層抽樣可求得高二被抽取的人數(shù).【詳解】高一年級抽取的人數(shù)為:人,則,則高二被抽取的人數(shù),故答案為:.16、【解析】求出直線恒過的定點(diǎn),結(jié)合曲線的圖象,數(shù)形結(jié)合,找出臨界狀態(tài),即可求得的取值范圍.【詳解】因?yàn)?,故可得,其表示圓心為,半徑為的圓的上半部分;因?yàn)?,即,其表示過點(diǎn),且斜率為的直線.在同一坐標(biāo)系下作圖如下:不妨設(shè)點(diǎn),直線斜率為,且過點(diǎn)與圓相切的直線斜率為數(shù)形結(jié)合可知:要使得曲線與直線有兩個不同的交點(diǎn),只需即可.容易知:;不妨設(shè)過點(diǎn)與相切的直線方程為,則由直線與圓相切可得:,解得,故.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,根據(jù)題意列出表達(dá)式,解出公比和公差,再根據(jù)等差數(shù)等比列的通項(xiàng)公式的求法求出通項(xiàng)即可;(2)根據(jù)第一問得到前n項(xiàng)和,數(shù)列,分組求和即可.解析:(1)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,∵,,,,∴,∴,,∴,.(2)由(1)知,,∴,∴.18、(1)(2)證明見解析,(3)【解析】(1)根據(jù)等比數(shù)列列出方程組求解首項(xiàng)、公比即可得解;(2)化簡后得,可證明數(shù)列是等差數(shù)列,即可得出,再求出即可;(3)利用錯位相減法求出數(shù)列的和.【小問1詳解】設(shè)公比為,由條件可知,,所以;【小問2詳解】,又,所以,所以數(shù)列是以為首項(xiàng),為公差等差數(shù)列,所以,所以.【小問3詳解】,,兩式相減可得,,.19、(1)12(2)18【解析】(1)根據(jù)已知的,利用等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式即可列式求解;(2)由第(1)問中求解出的的通項(xiàng)公式,要求前12項(xiàng)絕對值的和,可以發(fā)現(xiàn),該數(shù)列前6項(xiàng)為正項(xiàng),后6項(xiàng)為負(fù)項(xiàng),因此在算和的時候,后6項(xiàng)和可以取原通項(xiàng)公式的相反數(shù)即可計(jì)算,即為,然后再加上前6項(xiàng)和,即為要求的前12項(xiàng)絕對值的和.【小問1詳解】由題意可得,在等差數(shù)列中,已知公差,前項(xiàng)和所以,解之得,所以n=12【小問2詳解】由(1)可知數(shù)列{an}的通項(xiàng)公式為,所以即20、(1)(2)證明見解析【解析】(1)設(shè)橢圓方程為,利用待定系數(shù)法求得的值,即可得出答案;(2)設(shè),,,易得,分別求出直線PM和直線PN的方程,從而可求出的坐標(biāo),再根據(jù)即可得出答案.【小問1詳解】解:依題意設(shè)橢圓方程為,將,代入得,解得得,,∴所求橢圓方程為;【小問2詳解】證明:設(shè),,,,P點(diǎn)坐標(biāo)滿足,即,直線PM:,可得,直線PN:,可得,.21、(1);(2);(3)詳見解析.【解析】(1)根據(jù)拋物線的準(zhǔn)線方程求解;(2)由直線方程與拋物線方程聯(lián)立,利用弦長公式求解;(3)結(jié)合韋達(dá)定理,利用數(shù)量積

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論