版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
杭州市采荷實驗學校七年級下冊數(shù)學期末試卷(篇)(Word版含解析)一、解答題1.如圖1,已知直線CD∥EF,點A,B分別在直線CD與EF上.P為兩平行線間一點.(1)若∠DAP=40°,∠FBP=70°,則∠APB=(2)猜想∠DAP,∠FBP,∠APB之間有什么關系?并說明理由;(3)利用(2)的結論解答:①如圖2,AP1,BP1分別平分∠DAP,∠FBP,請你寫出∠P與∠P1的數(shù)量關系,并說明理由;②如圖3,AP2,BP2分別平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代數(shù)式表示)2.如圖,已知直線,點在直線上,點在直線上,點在點的右側,平分平分,直線交于點.(1)若時,則___________;(2)試求出的度數(shù)(用含的代數(shù)式表示);(3)將線段向右平行移動,其他條件不變,請畫出相應圖形,并直接寫出的度數(shù).(用含的代數(shù)式表示)3.已知:如圖(1)直線AB、CD被直線MN所截,∠1=∠2.(1)求證:AB//CD;(2)如圖(2),點E在AB,CD之間的直線MN上,P、Q分別在直線AB、CD上,連接PE、EQ,PF平分∠BPE,QF平分∠EQD,則∠PEQ和∠PFQ之間有什么數(shù)量關系,請直接寫出你的結論;(3)如圖(3),在(2)的條件下,過P點作PH//EQ交CD于點H,連接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度數(shù).4.已知直線,點P為直線、所確定的平面內(nèi)的一點.(1)如圖1,直接寫出、、之間的數(shù)量關系;(2)如圖2,寫出、、之間的數(shù)量關系,并證明;(3)如圖3,點E在射線上,過點E作,作,點G在直線上,作的平分線交于點H,若,,求的度數(shù).5.已知:如圖,直線AB//CD,直線EF交AB,CD于P,Q兩點,點M,點N分別是直線CD,EF上一點(不與P,Q重合),連接PM,MN.(1)點M,N分別在射線QC,QF上(不與點Q重合),當∠APM+∠QMN=90°時,①試判斷PM與MN的位置關系,并說明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度數(shù).(提示:過N點作AB的平行線)(2)點M,N分別在直線CD,EF上時,請你在備用圖中畫出滿足PM⊥MN條件的圖形,并直接寫出此時∠APM與∠QMN的關系.(注:此題說理時不能使用沒有學過的定理)二、解答題6.已知:三角形ABC和三角形DEF位于直線MN的兩側中,直線MN經(jīng)過點C,且,其中,,,點E、F均落在直線MN上.(1)如圖1,當點C與點E重合時,求證:;聰明的小麗過點C作,并利用這條輔助線解決了問題.請你根據(jù)小麗的思考,寫出解決這一問題的過程.(2)將三角形DEF沿著NM的方向平移,如圖2,求證:;(3)將三角形DEF沿著NM的方向平移,使得點E移動到點,畫出平移后的三角形DEF,并回答問題,若,則________.(用含的代數(shù)式表示)7.如圖1所示:點E為BC上一點,∠A=∠D,AB∥CD(1)直接寫出∠ACB與∠BED的數(shù)量關系;(2)如圖2,AB∥CD,BG平分∠ABE,BG的反向延長線與∠EDF的平分線交于H點,若∠DEB比∠GHD大60°,求∠DEB的度數(shù);(3)保持(2)中所求的∠DEB的度數(shù)不變,如圖3,BM平分∠EBK,DN平分∠CDE,作BP∥DN,則∠PBM的度數(shù)是否改變?若不發(fā)生變化,請求它的度數(shù),若發(fā)生改變,請說明理由.(本題中的角均為大于0°且小于180°的角).8.已知直線,M,N分別為直線,上的兩點且,P為直線上的一個動點.類似于平面鏡成像,點N關于鏡面所成的鏡像為點Q,此時.(1)當點P在N右側時:①若鏡像Q點剛好落在直線上(如圖1),判斷直線與直線的位置關系,并說明理由;②若鏡像Q點落在直線與之間(如圖2),直接寫出與之間的數(shù)量關系;(2)若鏡像,求的度數(shù).9.如圖,已知是直線間的一點,于點交于點.(1)求的度數(shù);(2)如圖2,射線從出發(fā),以每秒的速度繞P點按逆時針方向旋轉,當垂直時,立刻按原速返回至后停止運動:射線從出發(fā),以每秒的速度繞E點按逆時針方向旋轉至后停止運動,若射線,射線同時開始運動,設運動間為t秒.①當時,求的度數(shù);②當時,求t的值.10.如圖1,在平面直角坐標系中,,且滿足,過作軸于(1)求三角形的面積.(2)發(fā)過作交軸于,且分別平分,如圖2,若,求的度數(shù).(3)在軸上是否存在點,使得三角形和三角形的面積相等?若存在,求出點坐標;若不存在;請說明理由.三、解答題11.如圖,直線,、是、上的兩點,直線與、分別交于點、,點是直線上的一個動點(不與點、重合),連接、.(1)當點與點、在一直線上時,,,則_____.(2)若點與點、不在一直線上,試探索、、之間的關系,并證明你的結論.12.如圖,在中,是高,是角平分線,,.()求、和的度數(shù).()若圖形發(fā)生了變化,已知的兩個角度數(shù)改為:當,,則__________.當,時,則__________.當,時,則__________.當,時,則__________.()若和的度數(shù)改為用字母和來表示,你能找到與和之間的關系嗎?請直接寫出你發(fā)現(xiàn)的結論.13.Rt△ABC中,∠C=90°,點D、E分別是△ABC邊AC、BC上的點,點P是一動點.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若點P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2=°;(2)若點P在邊AB上運動,如圖(2)所示,則∠α、∠1、∠2之間的關系為:;(3)若點P運動到邊AB的延長線上,如圖(3)所示,則∠α、∠1、∠2之間有何關系?猜想并說明理由.(4)若點P運動到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間的關系為:.14.如圖①所示,在三角形紙片中,,,將紙片的一角折疊,使點落在內(nèi)的點處.(1)若,________.(2)如圖①,若各個角度不確定,試猜想,,之間的數(shù)量關系,直接寫出結論.②當點落在四邊形外部時(如圖②),(1)中的猜想是否仍然成立?若成立,請說明理由,若不成立,,,之間又存在什么關系?請說明.(3)應用:如圖③:把一個三角形的三個角向內(nèi)折疊之后,且三個頂點不重合,那么圖中的和是________.15.已知ABCD,點E是平面內(nèi)一點,∠CDE的角平分線與∠ABE的角平分線交于點F.(1)若點E的位置如圖1所示.①若∠ABE=60°,∠CDE=80°,則∠F=°;②探究∠F與∠BED的數(shù)量關系并證明你的結論;(2)若點E的位置如圖2所示,∠F與∠BED滿足的數(shù)量關系式是.(3)若點E的位置如圖3所示,∠CDE為銳角,且,設∠F=α,則α的取值范圍為.【參考答案】一、解答題1.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由見解析;(3)①∠P=2∠P1,理由見解析;②∠AP2B=.【分析】(1)過P作PM∥CD,根據(jù)兩直線平行,內(nèi)錯角相等可得∠APM=解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由見解析;(3)①∠P=2∠P1,理由見解析;②∠AP2B=.【分析】(1)過P作PM∥CD,根據(jù)兩直線平行,內(nèi)錯角相等可得∠APM=∠DAP,再根據(jù)平行公理求出CD∥EF然后根據(jù)兩直線平行,內(nèi)錯角相等可得∠MPB=∠FBP,最后根據(jù)∠APM+∠MPB=∠DAP+∠FBP等量代換即可得證;(2)結論:∠APB=∠DAP+∠FBP.(3)①根據(jù)(2)的規(guī)律和角平分線定義解答;②根據(jù)①的規(guī)律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根據(jù)角平分線的定義和平角等于180°列式整理即可得解.【詳解】(1)證明:過P作PM∥CD,∴∠APM=∠DAP.(兩直線平行,內(nèi)錯角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一條直線的兩條直線互相平行),∴∠MPB=∠FBP.(兩直線平行,內(nèi)錯角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性質)即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)結論:∠APB=∠DAP+∠FBP.理由:見(1)中證明.(3)①結論:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分別平分∠CAP、∠EBP,∴∠CAP2=∠CAP,∠EBP2=∠EBP,∴∠AP2B=∠CAP+∠EBP,=(180°-∠DAP)+(180°-∠FBP),=180°-(∠DAP+∠FBP),=180°-∠APB,=180°-β.【點睛】本題考查了平行線的性質,角平分線的定義,熟記性質與概念是解題的關鍵,此類題目,難點在于過拐點作平行線.2.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)過點E作EF∥AB,然后根據(jù)兩直線平行內(nèi)錯角相等,即可求∠BED的度數(shù);(2)同(1)中方法求解解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)過點E作EF∥AB,然后根據(jù)兩直線平行內(nèi)錯角相等,即可求∠BED的度數(shù);(2)同(1)中方法求解即可;(3)分當點B在點A左側和當點B在點A右側,再分三種情況,討論,分別過點E作EF∥AB,由角平分線的定義,平行線的性質,以及角的和差計算即可.【詳解】解:(1)當n=20時,∠ABC=40°,過E作EF∥AB,則EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)當點B在點A左側時,由(2)可知:∠BED=n°+40°;當點B在點A右側時,如圖所示,過點E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如圖所示,過點E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如圖所示,過點E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;綜上所述,∠BED的度數(shù)為n°+40°或n°-40°或220°-n°.【點睛】此題考查了平行線的判定與性質,以及角平分線的定義,正確應用平行線的性質得出各角之間關系是解題關鍵.3.(1)見解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先證明∠1=∠3,易證得AB//CD;(2)如圖2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行線解析:(1)見解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先證明∠1=∠3,易證得AB//CD;(2)如圖2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行線的性質即可證明;(3)如圖3中,設∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,想辦法構建方程即可解決問題;【詳解】(1)如圖1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)結論:如圖2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB//CD,EH//AB,∴EH//CD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ=∠1+∠4,同法可證:∠PFQ=∠BPF+∠FQD,∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,∴∠1+∠4+∠EQD+∠BPE=2×180°,即∠PEQ+2(∠FQD+∠BPF)=360°,∴∠PEQ+2∠PFQ=360°.(3)如圖3中,設∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,∵EQ//PH,∴∠EQC=∠PHQ=x,∴x+10y=180°,∵AB//CD,∴∠BPH=∠PHQ=x,∵PF平分∠BPE,∴∠EPQ+∠FPQ=∠FPH+∠BPH,∴∠FPH=y(tǒng)+z﹣x,∵PQ平分∠EPH,∴Z=y(tǒng)+y+z﹣x,∴x=2y,∴12y=180°,∴y=15°,∴x=30°,∴∠PHQ=30°.【點睛】本題考查了平行線的判定與性質,角平分線的定義等知識.(2)中能正確作出輔助線是解題的關鍵;(3)中能熟練掌握相關性質,找到角度之間的關系是解題的關鍵.4.(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內(nèi)角互補,即可證得∠A+∠C+∠APC=360解析:(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內(nèi)角互補,即可證得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根據(jù)兩直線平行,內(nèi)錯角相等,即可證得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先證∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根據(jù)∠PEH=∠PEG-∠GEH可得答案.【詳解】解:(1)∠A+∠C+∠APC=360°如圖1所示,過點P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如圖2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【點睛】此題考查了平行線的性質以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結合思想的應用.5.(1)①PM⊥MN,理由見解析;②∠EPB的度數(shù)為125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行線的性質得到∠APM=∠PMQ,再根據(jù)已知條解析:(1)①PM⊥MN,理由見解析;②∠EPB的度數(shù)為125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行線的性質得到∠APM=∠PMQ,再根據(jù)已知條件可得到PM⊥MN;②過點N作NH∥CD,利用角平分線的定義以及平行線的性質求得∠MNH=35°,即可求解;(2)分三種情況討論,利用平行線的性質即可解決.【詳解】解:(1)①PM⊥MN,理由見解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ+∠QMN=90°,∴PM⊥MN;②過點N作NH∥CD,∵AB//CD,∴AB//NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA+∠MNH=90°,即∠ENH+∠MNH=90°,∴∠MNQ+∠MNH+∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ+∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度數(shù)為125°;(2)當點M,N分別在射線QC,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM=∠PMQ,∴∠APM+∠QMN=90°;當點M,N分別在射線QC,線段PQ上時,如圖:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ-∠QMN=90°,∴∠APM-∠QMN=90°;當點M,N分別在射線QD,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM-∠QMN=90°;綜上,∠APM+∠QMN=90°或∠APM-∠QMN=90°.【點睛】本題主要考查了平行線的判定與性質,熟練掌握兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,同位角相等等知識是解題的關鍵.二、解答題6.(1)見解析;(2)見解析;(3)見解析;.【分析】(1)過點C作,得到,再根據(jù),,得到,進而得到,最后證明;(2)先證明,再證明,得到,問題得證;(3)根據(jù)題意得到,根據(jù)(2)結論得到∠D解析:(1)見解析;(2)見解析;(3)見解析;.【分析】(1)過點C作,得到,再根據(jù),,得到,進而得到,最后證明;(2)先證明,再證明,得到,問題得證;(3)根據(jù)題意得到,根據(jù)(2)結論得到∠DEF=∠ECA=,進而得到,根據(jù)三角形內(nèi)角和即可求解.【詳解】解:(1)過點C作,,,,,,,,,;(2)解:,,又,,,,,,;(3)如圖三角形DEF即為所求作三角形.∵,∴,由(2)得,DE∥AC,∴∠DEF=∠ECA=,∵,∴∠ACB=,∴,∴∠A=180°-=.故答案為為:.【點睛】本題考查了平行線的判定,三角形的內(nèi)角和等知識,綜合性較強,熟練掌握相關知識,根據(jù)題意畫出圖形是解題關鍵.7.(1);(2);(3)不發(fā)生變化,理由見解析【分析】(1)如圖1,延長DE交AB于點F,根據(jù)平行線的性質推出;(2)如圖2,過點E作ES∥AB,過點H作HT∥AB,根據(jù)AB∥CD,AB∥E解析:(1);(2);(3)不發(fā)生變化,理由見解析【分析】(1)如圖1,延長DE交AB于點F,根據(jù)平行線的性質推出;(2)如圖2,過點E作ES∥AB,過點H作HT∥AB,根據(jù)AB∥CD,AB∥ES推出,再根據(jù)AB∥TH,AB∥CD推出,最后根據(jù)比大得出的度數(shù);(3)如圖3,過點E作EQ∥DN,根據(jù)得出的度數(shù),根據(jù)條件再逐步求出的度數(shù).【詳解】(1)如答圖1所示,延長DE交AB于點F.AB∥CD,所以,又因為,所以,所以AC∥DF,所以.因為,所以.(2)如答圖2所示,過點E作ES∥AB,過點H作HT∥AB.設,,因為AB∥CD,AB∥ES,所以,,所以,因為AB∥TH,AB∥CD,所以,,所以,因為比大,所以,所以,所以,所以(3)不發(fā)生變化如答圖3所示,過點E作EQ∥DN.設,,由(2)易知,所以,所以,所以,所以.【點睛】本題考查了平行線的性質,求角的度數(shù),正確作出相關的輔助線,根據(jù)條件逐步求出角度的度數(shù)是解題的關鍵.8.(1)①,證明見解析,②,(2)或.【分析】(1)①根據(jù)和鏡像證出,即可判斷直線與直線的位置關系,②過點Q作QF∥CD,根據(jù)平行線的性質證即可;(2)過點Q作QF∥CD,根據(jù)點P的位置不同,解析:(1)①,證明見解析,②,(2)或.【分析】(1)①根據(jù)和鏡像證出,即可判斷直線與直線的位置關系,②過點Q作QF∥CD,根據(jù)平行線的性質證即可;(2)過點Q作QF∥CD,根據(jù)點P的位置不同,分類討論,依據(jù)平行線的性質求解即可.【詳解】(1)①,證明:∵,∴,∵,∴,∴;②過點Q作QF∥CD,∵,∴,∴,,∴,∵,∴;(2)如圖,當點P在N右側時,過點Q作QF∥CD,同(1)得,,∴,,∵,∴,∴,∵,∴,∴,如圖,當點P在N左側時,過點Q作QF∥CD,同(1)得,,同理可得,,∵,∴,∴,∵,∴,∴;綜上,的度數(shù)為或.【點睛】本題考查了平行線的性質與判定,解題關鍵是恰當?shù)淖鬏o助線,熟練利用平行線的性質推導角之間的關系.9.(1);(2)①或;②秒或或秒【分析】(1)通過延長作輔助線,根據(jù)平行線的性質,得到,再根據(jù)外角的性質可計算得到結果;(2)①當時,分兩種情況,Ⅰ當在和之間,Ⅱ當在和之間,由,計算出的運動時間解析:(1);(2)①或;②秒或或秒【分析】(1)通過延長作輔助線,根據(jù)平行線的性質,得到,再根據(jù)外角的性質可計算得到結果;(2)①當時,分兩種情況,Ⅰ當在和之間,Ⅱ當在和之間,由,計算出的運動時間,根據(jù)運動時間可計算出,由已知可計算出的度數(shù);②根據(jù)題意可知,當時,分三種情況,Ⅰ射線由逆時針轉動,,根據(jù)題意可知,,再平行線的性質可得,再根據(jù)三角形外角和定理可列等量關系,求解即可得出結論;Ⅱ射線垂直時,再順時針向運動時,,根據(jù)題意可知,,,,可計算射線的轉動度數(shù),再根據(jù)轉動可列等量關系,即可求出答案;Ⅲ射線垂直時,再順時針向運動時,,根據(jù)題意可知,,,根據(jù)(1)中結論,,,可計算出與代數(shù)式,再根據(jù)平行線的性質,可列等量關系,求解可得出結論.【詳解】解:(1)延長與相交于點,如圖1,,,,;(2)①Ⅰ如圖2,,,,射線運動的時間(秒,射線旋轉的角度,又,;Ⅱ如圖3所示,,,,射線運動的時間(秒,射線旋轉的角度,又,;的度數(shù)為或;②Ⅰ當由運動如圖4時,與相交于點,根據(jù)題意可知,經(jīng)過秒,,,,,又,,解得(秒;Ⅱ當運動到,再由運動到如圖5時,與相交于點,根據(jù)題意可知,經(jīng)過秒,,,,,運動的度數(shù)可得,,解得;Ⅲ當由運動如圖6時,,根據(jù)題意可知,經(jīng)過秒,,,,,,,又,,,解得(秒),當?shù)闹禐槊牖蚧蛎霑r,.【點睛】本題主要考查平行線性質,合理添加輔助線和根據(jù)題意畫出相應的圖形時解決本題的關鍵.10.(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根據(jù)非負數(shù)的性質得到a=?b,a?b+4=0,解得a=?2,b=2,則A(?2,0),B(2,0),C(2,2),即可計算出解析:(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根據(jù)非負數(shù)的性質得到a=?b,a?b+4=0,解得a=?2,b=2,則A(?2,0),B(2,0),C(2,2),即可計算出三角形ABC的面積=4;(2)由于CB∥y軸,BD∥AC,則∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,過E作EF∥AC,則BD∥AC∥EF,然后利用角平分線的定義可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;(3)先根據(jù)待定系數(shù)法確定直線AC的解析式為y=x+1,則G點坐標為(0,1),然后利用S△PAC=S△APG+S△CPG進行計算.【詳解】解:(1)由題意知:a=?b,a?b+4=0,解得:a=?2,b=2,∴A(?2,0),B(2,0),C(2,2),∴S△ABC=;(2)∵CB∥y軸,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,過E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分別平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=×90°=45°;(3)存在.理由如下:設P點坐標為(0,t),直線AC的解析式為y=kx+b,把A(?2,0)、C(2,2)代入得:,解得,∴直線AC的解析式為y=x+1,∴G點坐標為(0,1),∴S△PAC=S△APG+S△CPG=|t?1|?2+|t?1|?2=4,解得t=3或?1,∴P點坐標為(0,3)或(0,?1).【點睛】本題考查了絕對值、平方的非負性,平行線的判定與性質:內(nèi)錯角相等,兩直線平行;同旁內(nèi)角互補,兩直線平行;兩直線平行,內(nèi)錯角相等.三、解答題11.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當點與點、在一直線上時,作出圖形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當點與點、在一直線上時,作出圖形,由AB∥CD,∠FHP=60°,可以推出=60°,計算∠PFD即可;(2)根據(jù)點P是動點,分三種情況討論:①當點P在AB與CD之間時;②當點P在AB上方時;③當點P在CD下方時,分別求出∠AEP、∠EPF、∠CFP之間的關系即可.【詳解】(1)當點與點、在一直線上時,作圖如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案為:120°;(2)滿足關系式為∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.證明:根據(jù)點P是動點,分三種情況討論:①當點P在AB與CD之間時,過點P作PQ∥AB,如下圖,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②當點P在AB上方時,如下圖所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③當點P在CD下方時,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,綜上所述,∠AEP、∠EPF、∠CFP之間滿足的關系式為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【點睛】本題考查了平行線的性質,外角的性質,掌握平行線的性質是解題的關鍵,注意分情況討論問題.12.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當時,;當時,.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質分別得出和的度數(shù),進而可求和的度數(shù);解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當時,;當時,.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質分別得出和的度數(shù),進而可求和的度數(shù);(2)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質分別得出和的度數(shù),則前三問利用即可得出答案,第4問利用即可得出答案;(3)按照(2)的方法,將相應的數(shù)換成字母即可得出答案.【詳解】(1)∵,,∴.∵平分,∴.∵是高,,,,.(2)當,時,∵,,∴.∵平分,∴.∵是高,,,;當,時,∵,,∴.∵平分,∴.∵是高,,,;當,時,∵,,∴.∵平分,∴.∵是高,,,;當,時,∵,,∴.∵平分,∴.∵是高,,,.(3)當時,即時,∵,,∴.∵平分,∴.∵是高,,,;當時,即時,∵,,∴.∵平分,∴.∵是高,,,;綜上所述,當時,;當時,.【點睛】本題主要考查三角形內(nèi)角和定理和三角形的角平分線,高,掌握三角形內(nèi)角和定理和直角三角形兩銳角互余是解題的關鍵.13.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補角的定義,得出∠1+∠2解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補角的定義,得出∠1+∠2=∠C+∠α,進而得出即可;(2)利用(1)中所求的結論得出∠α、∠1、∠2之間的關系即可;(3)利用三角外角的性質,得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形內(nèi)角和定理以及鄰補角的性質可得出∠α、∠1、∠2之間的關系.試題分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案為140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案為∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如圖③,設DP與BE的交點為M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如圖④,設PE與AC的交點為F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案為∠2=90°+∠1-∠α點睛:本題考查了三角形內(nèi)角和定理和外角的性質、對頂角相等的性質,熟練掌握三角形外角的性質是解決問題的關鍵.14.(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)根據(jù)題意,已知,,可結合三角形內(nèi)角和定理和折疊變換的性質求解;(2)①先根據(jù)折疊得:∠ADE=∠A′DE,∠AED=∠A′解析:(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)根據(jù)題意,已知,,可結合三角形內(nèi)角和定理和折疊變換的性質求解;(2)①先根據(jù)折疊得:∠ADE=∠A′DE,∠AED=∠A′ED,由兩個平角∠AEB和∠ADC得:∠1+∠2等于360°與四個折疊角的差,化簡得結果;②利用兩次外角定理得出結論;(3)由折疊可知∠1+∠2+∠3+∠4+∠5+∠6等于六邊形的內(nèi)角和減去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的內(nèi)角和定理即可求解.【詳解】解:(1)∵,,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE=180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°;(2)①,理由如下由折疊得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED,∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A;②,理由如下:∵是的一個外角∴.∵是的一個外角∴又∵∴(3)如圖由題意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 裝修工程成品保護協(xié)議
- 2025年度個人知識產(chǎn)權擔保合同樣本
- 影視制作與發(fā)行權轉讓合同
- 藥渣運輸合同
- 漁業(yè)資源開發(fā)合同
- 2025年度個人貸款合同風險評估及管理規(guī)范3篇
- 云計算產(chǎn)業(yè)戰(zhàn)略合作合同
- 環(huán)保行業(yè)環(huán)保設備操作安全協(xié)議
- 生物質能發(fā)電項目合作框架協(xié)議
- 智能物聯(lián)網(wǎng)平臺合作開發(fā)協(xié)議
- 2025至2030年中國減肥肽數(shù)據(jù)監(jiān)測研究報告
- 2024內(nèi)蒙古公務員省直行測、行政執(zhí)法、省考行測考試真題(5套)
- 2025年安徽馬鞍山市兩山綠色生態(tài)環(huán)境建設有限公司招聘筆試參考題庫附帶答案詳解
- 山東省濱州市濱城區(qū)2024-2025學年九年級上學期期末考試化學試題
- 人教版八年級美術下冊全冊完整課件
- 1 運行方案說明
- 北京房地產(chǎn)典當合同
- PHILIPS HeartStart XL+操作培訓課件
- 檔案工作管理情況自查表
- 蘇科版九年級(初三)物理下冊全套課件
- 100個超高難度繞口令大全
評論
0/150
提交評論