新高考數(shù)學(xué)二輪復(fù)習(xí) 第3部分 回扣8 函數(shù)與導(dǎo)數(shù) (含解析)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí) 第3部分 回扣8 函數(shù)與導(dǎo)數(shù) (含解析)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí) 第3部分 回扣8 函數(shù)與導(dǎo)數(shù) (含解析)_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

回扣8函數(shù)與導(dǎo)數(shù)1.函數(shù)的定義域和值域(1)求函數(shù)定義域的類(lèi)型和相應(yīng)方法若已知函數(shù)的解析式,則函數(shù)的定義域是使解析式有意義的自變量的取值范圍.(2)常見(jiàn)函數(shù)的值域①一次函數(shù)y=kx+b(k≠0)的值域?yàn)镽;②二次函數(shù)y=ax2+bx+c(a≠0):當(dāng)a>0時(shí),值域?yàn)閑q\b\lc\[\rc\)(\a\vs4\al\co1(\f(4ac-b2,4a),+∞)),當(dāng)a<0時(shí),值域?yàn)閑q\b\lc\(\rc\](\a\vs4\al\co1(-∞,\f(4ac-b2,4a)));③反比例函數(shù)y=eq\f(k,x)(k≠0)的值域?yàn)閧y∈R|y≠0}.2.函數(shù)的奇偶性、周期性(1)奇偶性是函數(shù)在其定義域上的整體性質(zhì),對(duì)于定義域內(nèi)的任意x(定義域關(guān)于原點(diǎn)對(duì)稱(chēng)),都有f(-x)=-f(x)成立,則f(x)為奇函數(shù)(都有f(-x)=f(x)成立,則f(x)為偶函數(shù)).(2)周期性是函數(shù)在其定義域上的整體性質(zhì),一般地,對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)的任意一個(gè)x的值,若f(x+T)=f(x)(T≠0),則f(x)是周期函數(shù),T是它的一個(gè)周期.3.關(guān)于函數(shù)周期性、對(duì)稱(chēng)性的結(jié)論(1)函數(shù)的周期性①若函數(shù)f(x)滿足f(x+a)=f(x-a),則f(x)為周期函數(shù),2a是它的一個(gè)周期;②若函數(shù)f(x)滿足f(x+a)=eq\f(1,fx),則f(x)為周期函數(shù),2a是它的一個(gè)周期;③若函數(shù)f(x)滿足f(x+a)=-f(x),則f(x)為周期函數(shù),2a是它的一個(gè)周期.(2)函數(shù)圖象的對(duì)稱(chēng)性①若函數(shù)y=f(x)滿足f(a+x)=f(b-x),則函數(shù)f(x)的圖象關(guān)于直線x=eq\f(a+b,2)對(duì)稱(chēng).②若函數(shù)y=f(x)滿足f(a+x)=-f(b-x),則函數(shù)f(x)的圖象關(guān)于點(diǎn)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2),0))對(duì)稱(chēng).4.函數(shù)的單調(diào)性函數(shù)的單調(diào)性是函數(shù)在其定義域上的局部性質(zhì).①單調(diào)性的定義的等價(jià)形式:設(shè)任意x1,x2∈[a,b],且x1≠x2,那么(x1-x2)[f(x1)-f(x2)]>0?eq\f(fx1-fx2,x1-x2)>0?f(x)在[a,b]上是增函數(shù);(x1-x2)[f(x1)-f(x2)]<0?eq\f(fx1-fx2,x1-x2)<0?f(x)在[a,b]上是減函數(shù).②若函數(shù)f(x)和g(x)都是減函數(shù),則在公共定義域內(nèi),f(x)+g(x)是減函數(shù);若函數(shù)f(x)和g(x)都是增函數(shù),則在公共定義域內(nèi),f(x)+g(x)是增函數(shù);根據(jù)同增異減判斷復(fù)合函數(shù)y=f(g(x))的單調(diào)性.5.指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的基本性質(zhì)(1)定點(diǎn):y=ax(a>0,且a≠1)恒過(guò)(0,1)點(diǎn);y=logax(a>0,且a≠1)恒過(guò)(1,0)點(diǎn).(2)單調(diào)性:當(dāng)a>1時(shí),y=ax在R上單調(diào)遞增;y=logax在(0,+∞)上單調(diào)遞增;當(dāng)0<a<1時(shí),y=ax在R上單調(diào)遞減;y=logax在(0,+∞)上單調(diào)遞減.6.函數(shù)與方程(1)零點(diǎn)定義:x0為函數(shù)f(x)的零點(diǎn)?f(x0)=0?(x0,0)為f(x)的圖象與x軸的交點(diǎn).(2)確定函數(shù)零點(diǎn)的三種常用方法①解方程判定法:解方程f(x)=0;②零點(diǎn)存在性定理法:根據(jù)連續(xù)函數(shù)y=f(x)滿足f(a)f(b)<0,判斷函數(shù)在區(qū)間(a,b)內(nèi)存在零點(diǎn);③數(shù)形結(jié)合法:尤其是方程兩端對(duì)應(yīng)的函數(shù)類(lèi)型不同時(shí)多用此法求解.7.導(dǎo)數(shù)的幾何意義(1)f′(x0)的幾何意義:曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線的斜率,該切線的方程為y-f(x0)=f′(x0)·(x-x0).(2)切點(diǎn)的兩大特征:①在曲線y=f(x)上;②在切線上.8.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(1)求可導(dǎo)函數(shù)單調(diào)區(qū)間的一般步驟①求函數(shù)f(x)的定義域;②求導(dǎo)函數(shù)f′(x);③由f′(x)>0的解集確定函數(shù)f(x)的單調(diào)增區(qū)間,由f′(x)<0的解集確定函數(shù)f(x)的單調(diào)減區(qū)間.(2)由函數(shù)的單調(diào)性求參數(shù)的取值范圍①若可導(dǎo)函數(shù)f(x)在區(qū)間M上單調(diào)遞增,則f′(x)≥0(x∈M)恒成立;若可導(dǎo)函數(shù)f(x)在區(qū)間M上單調(diào)遞減,則f′(x)≤0(x∈M)恒成立;②若可導(dǎo)函數(shù)在某區(qū)間上存在單調(diào)遞增(減)區(qū)間,f′(x)>0(或f′(x)<0)在該區(qū)間上存在解集;③若已知f(x)在區(qū)間I上的單調(diào)性,區(qū)間I中含有參數(shù)時(shí),可先求出f(x)的單調(diào)區(qū)間,則I是其單調(diào)區(qū)間的子集.9.利用導(dǎo)數(shù)研究函數(shù)的極值與最值(1)求函數(shù)的極值的一般步驟①確定函數(shù)的定義域;②解方程f′(x)=0;③判斷f′(x)在方程f′(x)=0的根x0附近兩側(cè)的符號(hào)變化:若左正右負(fù),則x0為極大值點(diǎn);若左負(fù)右正,則x0為極小值點(diǎn);若不變號(hào),則x0不是極值點(diǎn).(2)求函數(shù)f(x)在區(qū)間[a,b]上的最值的一般步驟①求函數(shù)y=f(x)在(a,b)內(nèi)的極值;②比較函數(shù)y=f(x)的各極值與端點(diǎn)處的函數(shù)值f(a),f(b)的大小,最大的一個(gè)是最大值,最小的一個(gè)是最小值.1.解決函數(shù)問(wèn)題時(shí)要注意函數(shù)的定義域,要樹(shù)立定義域優(yōu)先原則.2.解決分段函數(shù)問(wèn)題時(shí),要注意與解析式對(duì)應(yīng)的自變量的取值范圍.3.求函數(shù)單調(diào)區(qū)間時(shí),多個(gè)單調(diào)區(qū)間之間不能用符號(hào)“∪”和“或”連接,可用“和”連接或用“,”隔開(kāi).單調(diào)區(qū)間必須是“區(qū)間”,而不能用集合或不等式代替.4.判斷函數(shù)的奇偶性,要注意定義域必須關(guān)于原點(diǎn)對(duì)稱(chēng),有時(shí)還要對(duì)函數(shù)式化簡(jiǎn)整理,但必須注意使定義域不受影響.5.準(zhǔn)確理解基本初等函數(shù)的定義和性質(zhì).如函數(shù)y=ax(a>0,a≠1)的單調(diào)性容易忽視對(duì)a的取值進(jìn)行討論;對(duì)數(shù)函數(shù)y=logax(a>0,a≠1)容易忽視真數(shù)與底數(shù)的限制條件.6.易混淆函數(shù)的零點(diǎn)和函數(shù)圖象與x軸的交點(diǎn),不能把函數(shù)零點(diǎn)、方程的解、不等式解集的端點(diǎn)值進(jìn)行準(zhǔn)確互化.7.已知可導(dǎo)函數(shù)f(x)在(a,b)上單調(diào)遞

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論